Newman-Conway Sequence
Newman-Conway Sequence is the one that generates the following integer sequence.
1 1 2 2 3 4 4 4 5 6 7 7…
In mathematical terms, the sequence P(n) of Newman-Conway numbers is defined by the recurrence relation
P(n) = P(P(n - 1)) + P(n - P(n - 1))
with seed values P(1) = 1 and P(2) = 1
Given a number n, print n-th number in Newman-Conway Sequence.
Examples:
Input : n = 2 Output : 1 Input : n = 10 Output : 6
Method 1 (Use Recursion) :
A simple approach is direct recursive implementation of above recurrence relation.
C++
// C++ program for n-th // element of Newman-Conway Sequence #include <bits/stdc++.h> using namespace std; // Recursive Function to find the n-th element int sequence( int n) { if (n == 1 || n == 2) return 1; else return sequence(sequence(n - 1)) + sequence(n - sequence(n - 1)); } // Driver Program int main() { int n = 10; cout << sequence(n); return 0; } |
Java
// Java program to find nth // element of Newman-Conway Sequence import java.io.*; class GFG { // Recursion to find // n-th element static int sequence( int n) { if (n == 1 || n == 2 ) return 1 ; else return sequence(sequence(n - 1 )) + sequence(n - sequence(n - 1 )); } // Driver Program public static void main(String args[]) { int n = 10 ; System.out.println(sequence(n)); } } /*This code is contributed by Nikita Tiwari.*/ |
Python
# Recursive function to find the n-th # element of sequence def sequence(n): if n = = 1 or n = = 2 : return 1 else : return sequence(sequence(n - 1 )) + sequence(n - sequence(n - 1 )); # Driver code def main(): n = 10 print sequence(n) if __name__ = = '__main__' : main() |
C#
// C# program to find nth element // of Newman-Conway Sequence using System; class GFG { // Recursion to find // n-th element static int sequence( int n) { if (n == 1 || n == 2) return 1; else return sequence(sequence(n - 1)) + sequence (n - sequence(n - 1)); } // Driver code public static void Main() { int n = 10; Console.Write(sequence(n)); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP program for n-th element // of Newman-Conway Sequence // Recursive Function to // find the n-th element function sequence( $n ) { if ( $n == 1 || $n == 2) return 1; else return sequence(sequence( $n - 1))+ sequence( $n - sequence( $n - 1)); } // Driver Code $n = 10; echo (sequence( $n )); // This code is contributed by Ajit. ?> |
Javascript
<script> // JavaScript program to find nth // element of Newman-Conway Sequence // Recursion to find // n-th element function sequence(n) { if (n == 1 || n == 2) return 1; else return sequence(sequence(n - 1)) + sequence(n - sequence(n - 1)); } // Driver code let n = 10; document.write(sequence(n)); // This code is contributed by souravghosh0416 </script> |
Output :
6
Time complexity: O(n)
Auxiliary Space: O(n)
Method 2 (Use Dynamic Programming):
We can avoid repeated work done in method 1 by storing the values in the sequence in an array.
C++
// C++ program to find the n-th element of // Newman-Conway Sequence #include <bits/stdc++.h> using namespace std; // Function to find the n-th element int sequence( int n) { // Declare array to store sequence int f[n + 1]; int i; f[0] = 0; f[1] = 1; f[2] = 1; for (i = 3; i <= n; i++) f[i] = f[f[i - 1]] + f[i - f[i - 1]]; return f[n]; } // Driver Program int main() { int n = 10; cout << sequence(n); return 0; } |
Java
// JAVA Code for Newman-Conway Sequence import java.util.*; class GFG { // Function to find the n-th element static int sequence( int n) { // Declare array to store sequence int f[] = new int [n + 1 ]; f[ 0 ] = 0 ; f[ 1 ] = 1 ; f[ 2 ] = 1 ; int i; for (i = 3 ; i <= n; i++) f[i] = f[f[i - 1 ]] + f[i - f[i - 1 ]]; return f[n]; } /* Driver program to test above function */ public static void main(String[] args) { int n = 10 ; System.out.println(sequence(n)); } } // This code is contributed by Arnav Kr. Mandal. |
Python
''' Python program to find the n-th element of Newman-Conway Sequence''' # To declare array import module array import array def sequence(n): f = array.array( 'i' , [ 0 , 1 , 1 ]) # To store values of sequence in array for i in range ( 3 , n + 1 ): r = f[f[i - 1 ]] + f[i - f[i - 1 ]] f.append(r); return r # Driver code def main(): n = 10 print sequence(n) if __name__ = = '__main__' : main() |
C#
// C# Code for Newman-Conway Sequence using System; class GFG { // Function to find the n-th element static int sequence( int n) { // Declare array to store sequence int []f = new int [n + 1]; f[0] = 0; f[1] = 1; f[2] = 1; int i; for (i = 3; i <= n; i++) f[i] = f[f[i - 1]] + f[i - f[i - 1]]; return f[n]; } // Driver Code public static void Main() { int n = 10; Console.Write(sequence(n)); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP program to find the n-th element // of Newman-Conway Sequence // Function to find // the n-th element function sequence( $n ) { // Declare array to // store sequence $i ; $f [0] = 0; $f [1] = 1; $f [2] = 1; for ( $i = 3; $i <= $n ; $i ++) $f [ $i ] = $f [ $f [ $i - 1]] + $f [ $i - $f [ $i - 1]]; return $f [ $n ]; } // Driver Code $n = 10; echo (sequence( $n )); // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript program to find the n-th element // of Newman-Conway Sequence // Function to find // the n-th element function sequence(n) { // Declare array to // store sequence let i; let f = []; f[0] = 0; f[1] = 1; f[2] = 1; for (let i = 3; i <= n; i++) f[i] = f[f[i - 1]] + f[i - f[i - 1]]; return f[n]; } // Driver Code let n = 10; document.write(sequence(n)); // This code is contributed by gfgking. </script> |
Output :
6
Time complexity: O(n)
Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!