Maximum count number of valley elements in a subarray of size K

Given an array arr[], the task is to choose a subarray of size K which contains the maximum number of valley points with respect to adjacent elements.
An element arr[i] is known as a valley point, if both of its adjacent elements are greater than it, i.e. and
.
Examples:
Input: arr[] = {5, 4, 6, 4, 5, 2, 3, 1}, K = 7 the
Output: 3
Explanation:
In subarray arr[0-6] = {5, 4, 6, 4, 5, 2, 3}
There are 3 Valley points in the subarray, which is maximum.
Input: arr[] = {2, 1, 4, 2, 3, 4, 1, 2}, K = 4
Output: 1
Explanation:
In subarray arr[0-3] = {2, 1, 4, 2}
There is only one valley point in the subarray, which is the maximum.
Approach: The idea is to use the sliding window technique to solve this problem.
Below is an illustration of the steps of the approach:
- Find the total count of valley points in the first sub-array of size K.
- Iterate for all the starting points of the possible subarrays, that is N-K points of the array, and apply the inclusion and exclusion principle to compute the number of valley points in the current window.
- At each step, update the final answer to compute the global maximum of every subarray.
Below is the implementation of the above approach:
C++
// C++ implementation to find the // maximum number of valley elements// in the subarrays of size K#include<bits/stdc++.h>using namespace std;// Function to find the valley elements// in the array which contains // in the subarrays of the size Kvoid minpoint(int arr[],int n, int k){ int min_point = 0; for (int i = 1; i < k-1 ; i++) { // Increment min_point // if element at index i // is smaller than element // at index i + 1 and i-1 if(arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) min_point += 1; } // final_point to maintain maximum // of min points of subarray int final_point = min_point; // Iterate over array // from kth element for(int i = k ; i < n; i++) { // Leftmost element of subarray if(arr[i - ( k - 1 )] < arr[i - ( k - 1 ) + 1]&& arr[i - ( k - 1 )] < arr[i - ( k - 1 ) - 1]) min_point -= 1; // Rightmost element of subarray if(arr[i - 1] < arr[i] && arr[i - 1] < arr[i - 2]) min_point += 1; // if new subarray have greater // number of min points than previous // subarray, then final_point is modified if(min_point > final_point) final_point = min_point; } // Max minimum points in // subarray of size k cout<<(final_point);}// Driver Codeint main(){ int arr[] = {2, 1, 4, 2, 3, 4, 1, 2}; int n = sizeof(arr)/sizeof(arr[0]); int k = 4; minpoint(arr, n, k); return 0; }// This code contributed by chitranayal |
Java
// Java implementation to find the // maximum number of valley elements // in the subarrays of size K class GFG{ // Function to find the valley elements // in the array which contains // in the subarrays of the size K static void minpoint(int arr[], int n, int k) { int min_point = 0; for(int i = 1; i < k - 1; i++) { // Increment min_point // if element at index i // is smaller than element // at index i + 1 and i-1 if(arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) min_point += 1; } // final_point to maintain maximum // of min points of subarray int final_point = min_point; // Iterate over array // from kth element for(int i = k ; i < n; i++) { // Leftmost element of subarray if(arr[i - ( k - 1 )] < arr[i - ( k - 1 ) + 1] && arr[i - ( k - 1 )] < arr[i - ( k - 1 ) - 1]) min_point -= 1; // Rightmost element of subarray if(arr[i - 1] < arr[i] && arr[i - 1] < arr[i - 2]) min_point += 1; // If new subarray have greater // number of min points than previous // subarray, then final_point is modified if(min_point > final_point) final_point = min_point; } // Max minimum points in // subarray of size k System.out.println(final_point); } // Driver Code public static void main (String[] args){ int arr[] = { 2, 1, 4, 2, 3, 4, 1, 2 }; int n = arr.length; int k = 4; minpoint(arr, n, k); } }// This code is contributed by AnkitRai01 |
Python3
# Python3 implementation to find the # maximum number of valley elements# in the subarrays of size K# Function to find the valley elements# in the array which contains # in the subarrays of the size Kdef minpoint(arr, n, k): min_point = 0 for i in range(1, k-1): # Increment min_point # if element at index i # is smaller than element # at index i + 1 and i-1 if(arr[i] < arr[i - 1] and arr[i] < arr[i + 1]): min_point += 1 # final_point to maintain maximum # of min points of subarray final_point = min_point # Iterate over array # from kth element for i in range(k, n): # Leftmost element of subarray if(arr[i - ( k - 1 )] < arr[i - ( k - 1 ) + 1] and\ arr[i - ( k - 1 )] < arr[i - ( k - 1 ) - 1]): min_point -= 1 # Rightmost element of subarray if(arr[i - 1] < arr[i] and arr[i - 1] < arr[i - 2]): min_point += 1 # if new subarray have greater # number of min points than previous # subarray, then final_point is modified if(min_point > final_point): final_point = min_point # Max minimum points in # subarray of size k print(final_point)# Driver Codeif __name__ == "__main__": arr = [2, 1, 4, 2, 3, 4, 1, 2] n = len(arr) k = 4 minpoint(arr, n, k) |
C#
// C# implementation to find the // maximum number of valley elements // in the subarrays of size K using System;class GFG{ // Function to find the valley elements // in the array which contains // in the subarrays of the size K static void minpoint(int []arr, int n, int k) { int min_point = 0; for(int i = 1; i < k - 1; i++) { // Increment min_point // if element at index i // is smaller than element // at index i + 1 and i-1 if(arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) min_point += 1; } // final_point to maintain maximum // of min points of subarray int final_point = min_point; // Iterate over array // from kth element for(int i = k ; i < n; i++) { // Leftmost element of subarray if(arr[i - ( k - 1 )] < arr[i - ( k - 1 ) + 1] && arr[i - ( k - 1 )] < arr[i - ( k - 1 ) - 1]) min_point -= 1; // Rightmost element of subarray if(arr[i - 1] < arr[i] && arr[i - 1] < arr[i - 2]) min_point += 1; // If new subarray have greater // number of min points than previous // subarray, then final_point is modified if(min_point > final_point) final_point = min_point; } // Max minimum points in // subarray of size k Console.WriteLine(final_point); } // Driver Code public static void Main (string[] args){ int []arr = { 2, 1, 4, 2, 3, 4, 1, 2 }; int n = arr.Length; int k = 4; minpoint(arr, n, k); } }// This code is contributed by AnkitRai01 |
Javascript
<script>// Javascript implementation to find the// maximum number of valley elements// in the subarrays of size K// Function to find the valley elements// in the array which contains// in the subarrays of the size Kfunction minpoint(arr, n, k) { let min_point = 0; for (let i = 1; i < k - 1; i++) { // Increment min_point // if element at index i // is smaller than element // at index i + 1 and i-1 if (arr[i] < arr[i - 1] && arr[i] < arr[i + 1]) min_point += 1; } // final_point to maintain maximum // of min points of subarray let final_point = min_point; // Iterate over array // from kth element for (let i = k; i < n; i++) { // Leftmost element of subarray if (arr[i - (k - 1)] < arr[i - (k - 1) + 1] && arr[i - (k - 1)] < arr[i - (k - 1) - 1]) min_point -= 1; // Rightmost element of subarray if (arr[i - 1] < arr[i] && arr[i - 1] < arr[i - 2]) min_point += 1; // if new subarray have greater // number of min points than previous // subarray, then final_point is modified if (min_point > final_point) final_point = min_point; } // Max minimum points in // subarray of size k document.write(final_point);}// Driver Codelet arr = [2, 1, 4, 2, 3, 4, 1, 2];let n = arr.length;let k = 4;minpoint(arr, n, k);// This code contributed by _saurabh_jaiswal</script> |
1
Time Complexity: O(N)
Space Complexity: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!


