Maximum length of Strictly Increasing Sub-array after removing at most one element
Given an array arr[], the task is to remove at most one element and calculate the maximum length of strictly increasing subarray.
Examples:
Input: arr[] = {1, 2, 5, 3, 4}
Output: 4
After deleting 5, the resulting array will be {1, 2, 3, 4}
and the maximum length of its strictly increasing subarray is 4.Input: arr[] = {1, 2}
Output: 2
The complete array is already strictly increasing.
Approach:
- Create two arrays pre[] and pos[] of size N.
- Iterate over the input array arr[] from (0, N) to find out the contribution of the current element arr[i] in the array till now [0, i) and update the pre[] array if it contributes to the strictly increasing subarray.
- Iterate over the input array arr[] from [N – 2, 0] to find out the contribution of the current element arr[j] in the array till now (N, j) and update the pos[] array if arr[j] contributes in the longest increasing subarray.
- Calculate the maximum length of the strictly increasing subarray without removing any element.
- Iterate over the array pre[] and pos[] to find out the contribution of the current element by excluding that element.
- Maintain a variable ans to find the maximum found till now.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximum length of strictly // increasing subarray after removing atmost one element int maxIncSubarr( int a[], int n) { // Create two arrays pre and pos int pre[n] = { 0 }; int pos[n] = { 0 }; pre[0] = 1; pos[n - 1] = 1; int l = 0; // Find out the contribution of the current element in // array[0, i] and update pre[i] for ( int i = 1; i < n; i++) { if (a[i] > a[i - 1]) pre[i] = pre[i - 1] + 1; else pre[i] = 1; } // Find out the contribution of the current element in // array[N - 1, i] and update pos[i] l = 1; for ( int i = n - 2; i >= 0; i--) { if (a[i] < a[i + 1]) pos[i] = pos[i + 1] + 1; else pos[i] = 1; } // Calculate the maximum length of the strictly // increasing subarray without removing any element int ans = 0; l = 1; for ( int i = 1; i < n; i++) { if (a[i] > a[i - 1]) l++; else l = 1; ans = max(ans, l); } // Calculate the maximum length of the strictly // increasing subarray after removing the current // element for ( int i = 1; i <= n - 2; i++) if (a[i - 1] < a[i + 1]) ans = max(pre[i - 1] + pos[i + 1], ans); return ans; } // Driver code int main() { int arr[] = { 1, 2 }; int n = sizeof (arr) / sizeof ( int ); cout << maxIncSubarr(arr, n); return 0; } |
C
// C implementation of the approach #include <stdio.h> // Find maximum between two numbers. int max( int num1, int num2) { return (num1 > num2) ? num1 : num2; } // Function to return the maximum length of strictly // increasing subarray after removing atmost one element int maxIncSubarr( int a[], int n) { // Create two arrays pre and pos int pre[n]; int pos[n]; for ( int i = 0; i < n; i++) pre[i] = 0; for ( int i = 0; i < n; i++) pos[i] = 0; pre[0] = 1; pos[n - 1] = 1; int l = 0; // Find out the contribution of the current element in // array[0, i] and update pre[i] for ( int i = 1; i < n; i++) { if (a[i] > a[i - 1]) pre[i] = pre[i - 1] + 1; else pre[i] = 1; } // Find out the contribution of the current element in // array[N - 1, i] and update pos[i] l = 1; for ( int i = n - 2; i >= 0; i--) { if (a[i] < a[i + 1]) pos[i] = pos[i + 1] + 1; else pos[i] = 1; } // Calculate the maximum length of the strictly // increasing subarray without removing any element int ans = 0; l = 1; for ( int i = 1; i < n; i++) { if (a[i] > a[i - 1]) l++; else l = 1; ans = max(ans, l); } // Calculate the maximum length of the strictly // increasing subarray after removing the current // element for ( int i = 1; i <= n - 2; i++) if (a[i - 1] < a[i + 1]) ans = max(pre[i - 1] + pos[i + 1], ans); return ans; } // Driver code int main() { int arr[] = { 1, 2 }; int n = sizeof (arr) / sizeof ( int ); printf ( "%d" , maxIncSubarr(arr, n)); return 0; } // This code is contributed by Sania Kumari Gupta |
Java
// Java implementation of the approach import java.io.*; class GFG { // Function to return the maximum length of // strictly increasing subarray after // removing atmost one element static int maxIncSubarr( int a[], int n) { // Create two arrays pre and pos int pre[] = new int [n] ; int pos[] = new int [n] ; pre[ 0 ] = 1 ; pos[n - 1 ] = 1 ; int l = 0 ; // Find out the contribution of the current // element in array[0, i] and update pre[i] for ( int i = 1 ; i < n; i++) { if (a[i] > a[i - 1 ]) pre[i] = pre[i - 1 ] + 1 ; else pre[i] = 1 ; } // Find out the contribution of the current // element in array[N - 1, i] and update pos[i] l = 1 ; for ( int i = n - 2 ; i >= 0 ; i--) { if (a[i] < a[i + 1 ]) pos[i] = pos[i + 1 ] + 1 ; else pos[i] = 1 ; } // Calculate the maximum length of the // strictly increasing subarray without // removing any element int ans = 0 ; l = 1 ; for ( int i = 1 ; i < n; i++) { if (a[i] > a[i - 1 ]) l++; else l = 1 ; ans = Math.max(ans, l); } // Calculate the maximum length of the // strictly increasing subarray after // removing the current element for ( int i = 1 ; i <= n - 2 ; i++) { if (a[i - 1 ] < a[i + 1 ]) ans = Math.max(pre[i - 1 ] + pos[i + 1 ], ans); } return ans; } // Driver code public static void main (String[] args) { int arr[] = { 1 , 2 }; int n = arr.length; System.out.println(maxIncSubarr(arr, n)); } } // This code is contributed by AnkitRai01 |
Python3
# Python implementation of the approach # Function to return the maximum length of # strictly increasing subarray after # removing atmost one element def maxIncSubarr(a, n): # Create two arrays pre and pos pre = [ 0 ] * n; pos = [ 0 ] * n; pre[ 0 ] = 1 ; pos[n - 1 ] = 1 ; l = 0 ; # Find out the contribution of the current # element in array[0, i] and update pre[i] for i in range ( 1 , n): if (a[i] > a[i - 1 ]): pre[i] = pre[i - 1 ] + 1 ; else : pre[i] = 1 ; # Find out the contribution of the current # element in array[N - 1, i] and update pos[i] l = 1 ; for i in range (n - 2 , - 1 , - 1 ): if (a[i] < a[i + 1 ]): pos[i] = pos[i + 1 ] + 1 ; else : pos[i] = 1 ; # Calculate the maximum length of the # strictly increasing subarray without # removing any element ans = 0 ; l = 1 ; for i in range ( 1 , n): if (a[i] > a[i - 1 ]): l + = 1 ; else : l = 1 ; ans = max (ans, l); # Calculate the maximum length of the # strictly increasing subarray after # removing the current element for i in range ( 1 , n - 1 ): if (a[i - 1 ] < a[i + 1 ]): ans = max (pre[i - 1 ] + pos[i + 1 ], ans); return ans; # Driver code if __name__ = = '__main__' : arr = [ 1 , 2 ]; n = len (arr); print (maxIncSubarr(arr, n)); # This code is contributed by PrinciRaj1992 |
C#
// C# implementation of the approach using System; class GFG { // Function to return the maximum length of // strictly increasing subarray after // removing atmost one element static int maxIncSubarr( int []a, int n) { // Create two arrays pre and pos int []pre = new int [n] ; int []pos = new int [n] ; pre[0] = 1; pos[n - 1] = 1; int l = 0; // Find out the contribution of the current // element in array[0, i] and update pre[i] for ( int i = 1; i < n; i++) { if (a[i] > a[i - 1]) pre[i] = pre[i - 1] + 1; else pre[i] = 1; } // Find out the contribution of the current // element in array[N - 1, i] and update pos[i] l = 1; for ( int i = n - 2; i >= 0; i--) { if (a[i] < a[i + 1]) pos[i] = pos[i + 1] + 1; else pos[i] = 1; } // Calculate the maximum length of the // strictly increasing subarray without // removing any element int ans = 0; l = 1; for ( int i = 1; i < n; i++) { if (a[i] > a[i - 1]) l++; else l = 1; ans = Math.Max(ans, l); } // Calculate the maximum length of the // strictly increasing subarray after // removing the current element for ( int i = 1; i <= n - 2; i++) { if (a[i - 1] < a[i + 1]) ans = Math.Max(pre[i - 1] + pos[i + 1], ans); } return ans; } // Driver code public static void Main() { int []arr = {1, 2}; int n = arr.Length; Console.WriteLine(maxIncSubarr(arr, n)); } } // This code is contributed by AnkitRai01 |
Javascript
<script> // Javascript implementation of the approach // Function to return the maximum length of // strictly increasing subarray after // removing atmost one element function maxIncSubarr(a, n) { // Create two arrays pre and pos let pre = new Array(n); let pos = new Array(n); pre.fill(0); pos.fill(0); pre[0] = 1; pos[n - 1] = 1; let l = 0; // Find out the contribution of the current // element in array[0, i] and update pre[i] for (let i = 1; i < n; i++) { if (a[i] > a[i - 1]) pre[i] = pre[i - 1] + 1; else pre[i] = 1; } // Find out the contribution of the current // element in array[N - 1, i] and update pos[i] l = 1; for (let i = n - 2; i >= 0; i--) { if (a[i] < a[i + 1]) pos[i] = pos[i + 1] + 1; else pos[i] = 1; } // Calculate the maximum length of the // strictly increasing subarray without // removing any element let ans = 0; l = 1; for (let i = 1; i < n; i++) { if (a[i] > a[i - 1]) l++; else l = 1; ans = Math.max(ans, l); } // Calculate the maximum length of the // strictly increasing subarray after // removing the current element for (let i = 1; i <= n - 2; i++) { if (a[i - 1] < a[i + 1]) ans = Math.max(pre[i - 1] + pos[i + 1], ans); } return ans; } // Driver code let arr = [ 1, 2 ]; let n = arr.length; document.write(maxIncSubarr(arr, n)); // This code is contributed by rameshtravel07 </script> |
Output
2
Time Complexity: O(N)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!