Check if elements of an array can be arranged satisfying the given condition

Given an array arr of N (even) integer elements. The task is to check if it is possible to reorder the elements of the array such that: 

arr[2*i + 1] = 2 * A[2 * i] 

for i = 0 ... N-1. 

Print True if it is possible, otherwise print False.

Examples: 

Input: arr[] = {4, -2, 2, -4} 
Output: True 
{-2, -4, 2, 4} is a valid arrangement, -2 * 2 = -4 and 2 * 2 = 4

Input: arr[] = {1, 2, 4, 16, 8, 4} 
Output: False

Approach: The idea is that, if k is current minimum element in the array then it must pair with 2 * k as there does not exist any other element k / 2 to pair it with. 

We check elements in ascending order. When we check an element k and it isn’t used, it must pair with 2 * k. We will attempt to arrange k followed by 2 * k however if we can’t, then the answer is False. In the end, if all the operations are successful, then print True

We will store a count of each element to keep track of what we have not yet considered. 

Below is the implementation of above approach: 

C++




// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to return true if the elements
// can be arranged in the desired order
string canReorder(int A[],int n)
{
    map<int,int> m;
     
    for(int i=0;i<n;i++)
    m[A[i]]++;
     
    sort(A,A+n);
    int count = 0;
  
    for(int i=0;i<n;i++)
    {
        if (m[A[i]] == 0)
            continue;
  
        // If 2 * x is not found to pair
        if (m[2 * A[i]]){
             
        count+=2;
         
        // Remove an occurrence of x
        // and an occurrence of 2 * x
        m[A[i]] -= 1;
        m[2 * A[i]] -= 1;
        }
    }
    if(count ==n)
    return "true";
    else
    return "false";
}
  
  
// Driver Code
int main()
{
int A[] = {4, -2, 2, -4};
int n= sizeof(A)/sizeof(int);
  
// Function call to print required answer
cout<<(canReorder(A,n));
 
return 0;
}
//contributed by Arnab Kundu


Java




// Java implementation of the approach
import java.util.HashMap;
import java.util.Map;
import java.util.Arrays;
 
class GfG
{
     
    // Function to return true if the elements
    // can be arranged in the desired order
    static String canReorder(int A[],int n)
    {
        HashMap<Integer,Integer> m = new HashMap<>();
         
        for(int i = 0; i < n; i++)
        {
             
            if (m.containsKey(A[i]))
                m.put(A[i], m.get(A[i]) + 1);
            else
                m.put(A[i], 1);
        }
         
        Arrays.sort(A);
        int count = 0;
     
        for(int i = 0; i < n; i++)
        {
            if (m.get(A[i]) == 0)
                continue;
     
            // If 2 * x is not found to pair
            if (m.containsKey(2 * A[i]))
            {
                 
                count += 2;
                 
                // Remove an occurrence of x
                // and an occurrence of 2 * x
                m.put(A[i], m.get(A[i]) - 1);
                m.put(2 * A[i], m.get(2 * A[i]) - 1);
            }
        }
         
        if(count == n)
            return "true";
        else
            return "false";
    }
 
    // Driver code
    public static void main(String []args)
    {
         
        int A[] = {4, -2, 2, -4};
        int n = A.length;
         
        // Function call to print required answer
        System.out.println(canReorder(A,n));
    }
}
 
// This code is contributed by Rituraj Jain


Python




# Python implementation of the approach
import collections
 
# Function to return true if the elements
# can be arranged in the desired order
def canReorder(A):
 
    count = collections.Counter(A)
 
    for x in sorted(A, key = abs):
        if count[x] == 0:
            continue
 
        # If 2 * x is not found to pair
        if count[2 * x] == 0:
            return False
 
        # Remove an occurrence of x
        # and an occurrence of 2 * x
        count[x] -= 1
        count[2 * x] -= 1
 
    return True
 
 
# Driver Code
A = [4, -2, 2, -4]
 
# Function call to print required answer
print(canReorder(A))


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
     
// Function to return true if the elements
// can be arranged in the desired order
static String canReorder(int []A,int n)
{
    Dictionary<int,
               int> m = new Dictionary<int,
                                       int>();
     
    for(int i = 0; i < n; i++)
    {
        if (m.ContainsKey(A[i]))
            m[A[i]]= m[A[i]] + 1;
        else
            m.Add(A[i], 1);
    }
     
    Array.Sort(A);
    int count = 0;
 
    for(int i = 0; i < n; i++)
    {
        if (m[A[i]] == 0)
            continue;
 
        // If 2 * x is not found to pair
        if (m.ContainsKey(2 * A[i]))
        {
            count += 2;
             
            // Remove an occurrence of x
            // and an occurrence of 2 * x
            m[A[i]]= m[A[i]] - 1;
            if (m.ContainsKey(2 * A[i]))
                m[2 * A[i]]= m[2 * A[i]] - 1;
            else
                m.Add(2 * A[i], m[2 * A[i]] - 1);
        }
    }
    if(count == n)
        return "True";
    else
        return "False";
}
 
// Driver code
public static void Main(String []args)
{
    int []A = {4, -2, 2, -4};
    int n = A.Length;
     
    // Function call to print required answer
    Console.WriteLine(canReorder(A,n));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to return true if the elements
// can be arranged in the desired order
function canReorder(A, n)
{
    let m = new Map();
     
    for(let i=0;i<n;i++){
        if(m.has(A[i])){
            m.set(A[i], m.get(A[i]) + 1)
        }else{
            m.set(A[i], 1)
        }
    }
     
    A.sort((a, b) =>  a - b);
    let count = 0;
 
    for(let i=0;i<n;i++)
    {
        if (m.get(A[i]) == 0)
            continue;
 
        // If 2 * x is not found to pair
        if (m.get(2 * A[i])){
             
        count+=2;
         
        // Remove an occurrence of x
        // and an occurrence of 2 * x
        m.set(A[i], m.get(A[i]) - 1);
        m.set(2 * A[i], m.get(2 * A[i])- 1);
        }
    }
    if(count ==n)
    return "True";
    else
    return "False";
}
 
 
// Driver Code
 
let A = [4, -2, 2, -4];
let n= A.length;
 
// Function call to print required answer
document.write((canReorder(A,n)));
 
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output

true

Complexity Analysis:

  • Time Complexity: O(n * log n)
  • Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button