Find two numbers whose sum is N and does not contain any digit as K

Given an integer N, the task is to find two numbers a and b such that a + b = N, where a and b doesn’t contain any of the digits as K. Print -1 if not possible.

Examples:

Input: N = 100, K = 0
Output: 1 99
Explanation:
1 + 99 = 100 and none of the numbers has 0 in it.

 Input: N = 123456789, K = 2
Output: 3456790 119999999 
Explanation:
3456790 + 119999999 = 123456789 and none of the numbers has 2 in it.

 

Approach: The idea is to iterate a loop from i = 1 to n-1, and check if i and (n – i) do not contain K. If it doesn’t contain any digit as then print the two numbers and break out of the loop. 

For Example: N = 11, k = 0
i = 1, N – 1 = 10 but 10 contains 0, so increment i
i = 2, N – 1 = 9, so print this i and n – i.

Below is the implementation of the above approach:

C++




// C++ program for
// the above approach
#include<bits/stdc++.h>
using namespace std;
 
int freqCount(string str, char k)
{
    int count = 0;
    for(int i = 0;
            i < str.size(); i++)
    {
        if (str[i] == k)
        count++;
    }
    return count;
}
 
// Function to find two
// numbers whose sum
// is N and do not
// contain any digit as k
void findAandB(int n, int k)
{
    int flag = 0;
     
    // Check every number i and (n-i)
    for(int i = 1; i < n; i++)
    {
        // Check if i and n-i doesn't
        // contain k in them print i and n-i
        if (freqCount(to_string(i),
                     (char)(k + 48)) == 0 and
            freqCount(to_string(n - i),
                     (char)(k + 48)) == 0)
        {
            cout << "(" << i << ", "
                 << n - i << ")";
            flag = 1;
            break;
        }
    }
     
    // Check if flag is 0
    // then print -1
    if (flag == 0)
        cout << -1;
}
 
// Driver Code
int main()
{
     
    // Given N and K
    int N = 100;
    int K = 0;
     
    // Function call
    findAandB(N, K);
    return 0;
}
 
// This code is contributed by Rajput-Ji


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
static int freqCount(String str, char k)
{
    int count = 0;
    for(int i = 0; i < str.length(); i++)
    {
        if (str.charAt(i) == k)
            count++;
    }
    return count;
}
 
// Function to find two numbers
// whose sum is N and do not
// contain any digit as k
static void findAandB(int n, int k)
{
    int flag = 0;
 
    // Check every number i and (n-i)
    for(int i = 1; i < n; i++)
    {
         
        // Check if i and n-i doesn't
        // contain k in them print i and n-i
        if (freqCount(Integer.toString(i),
                     (char)(k + 48)) == 0 &&
            freqCount(Integer.toString(n - i),
                     (char)(k + 48)) == 0)
        {
            System.out.print("(" + i + ", " +
                              (n - i) + ")");
            flag = 1;
            break;
        }
    }
 
    // Check if flag is 0
    // then print -1
    if (flag == 0)
        System.out.print(-1);
}
 
// Driver code
public static void main(String[] args)
{
 
    // Given N and K
    int N = 100;
    int K = 0;
 
    // Function call
    findAandB(N, K);
}
}
 
// This code is contributed by offbeat


Python




# Python program for the above approach
 
# Function to find two numbers whose sum
# is N and do not contain any digit as k
def findAandB(n, k):
   
    flag = 0
 
    # Check every number i and (n-i)
    for i in range(1, n):
 
        # Check if i and n-i doesn't
        # contain k in them print i and n-i
        if str(i).count(chr(k + 48)) == 0 \
        and str(n-i).count(chr(k + 48)) == 0:
            print(i, n-i)
            flag = 1
            break
 
    # check if flag is 0 then print -1
    if(flag == 0):
        print(-1)
 
# Driver Code
if __name__ == '__main__':
   
  # Given N and K
    N = 100
    K = 0
     
    # Function Call
    findAandB(N, K)


C#




// C# program for the
// above approach
using System;
class GFG{
 
static int freqCount(String str,
                     char k)
{
  int count = 0;
   
  for(int i = 0; i < str.Length; i++)
  {
    if (str[i] == k)
      count++;
  }
   
  return count;
}
 
// Function to find two numbers
// whose sum is N and do not
// contain any digit as k
static void findAandB(int n, int k)
{
  int flag = 0;
 
  // Check every number i and (n-i)
  for(int i = 1; i < n; i++)
  {
    // Check if i and n-i doesn't
    // contain k in them print i and n-i
    if (freqCount(i.ToString(),
                 (char)(k + 48)) == 0 &&
        freqCount((n-i).ToString(),
                  (char)(k + 48)) == 0)
    {
      Console.Write("(" + i + ", " +
                    (n - i) + ")");
      flag = 1;
      break;
    }
  }
 
  // Check if flag is 0
  // then print -1
  if (flag == 0)
    Console.Write(-1);
}
 
// Driver code
public static void Main(String[] args)
{
  // Given N and K
  int N = 100;
  int K = 0;
 
  // Function call
  findAandB(N, K);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program for
// the above approach
 
function freqCount(str, k)
{
    var count = 0;
    for(var i = 0;
            i < str.length; i++)
    {
        if (str[i] == k)
        count++;
    }
    return count;
}
 
// Function to find two
// numbers whose sum
// is N and do not
// contain any digit as k
function findAandB(n, k)
{
    var flag = 0;
     
    // Check every number i and (n-i)
    for(var i = 1; i < n; i++)
    {
        // Check if i and n-i doesn't
        // contain k in them print i and n-i
        if (freqCount(i.toString(),
                     String.fromCharCode(k + 48)) == 0 &&
            freqCount((n - i).toString(),
                     String.fromCharCode(k + 48)) == 0)
        {
            document.write( "(" + i + ", "
                 + (n - i) + ")");
            flag = 1;
            break;
        }
    }
     
    // Check if flag is 0
    // then print -1
    if (flag == 0)
        cout + -1;
}
 
// Driver Code
// Given N and K
var N = 100;
var K = 0;
 
// Function call
findAandB(N, K);
 
// This code is contributed by rrrtnx.
</script>


Output: 

(1, 99)

 

Time Complexity: O(N*L) where L is the length of N
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button