Print all the leaf nodes of Binary Heap

Given an array of N elements which denotes the array representation of binary heap, the task is to find the leaf nodes of this binary heap.
Examples:
Input:
arr[] = {1, 2, 3, 4, 5, 6, 7}
Output: 4 5 6 7
Explanation:
1
/ \
2 3
/ \ / \
4 5 6 7
Leaf nodes of the Binary Heap are:
4 5 6 7
Input:
arr[] = {1, 2, 3, 4, 5,
6, 7, 8, 9, 10}
Output: 6 7 8 9 10
Explanation:
1
/ \
2 3
/ \ / \
4 5 6 7
/ \ /
8 9 10
Leaf Nodes of the Binary Heap are:
6 7 8 9 10
Approach: The key observation in the problem is that the every leaf node of the Binary Heap will be at the Height H or H -1, If H is the height of the Binary Heap. Therefore, the leaf nodes can be computed as follows:
- Calculate the total height of the binary heap.
- Traverse the array in reverse order and compare the height of each node to the compute height H of the Binary Heap.
- If the height of the current node is H, then add the current node to the leaf nodes.
- Otherwise, If the height of current node is H-1 and there are no child nodes, then also add the node as leaf node.
Below is the implementation of the above approach:
C++
// C++ implementation to print// the leaf nodes of a Binary Heap#include <bits/stdc++.h>using namespace std;// Function to find the height of// complete binary treeint height(int N) { return (int)floor(log2(N + 1)); }// Function to pr the leaf nodesvoid prLeafNodes(vector<int> arrlist){ for (int i = arrlist.size() - 1; i >= -0; i--) cout << arrlist[i] << " ";}// Function to find the leaf// nodes of binary heapvoid findLeafNodes(int arr[], int n){ // Calculate the height of // the complete binary tree int h = height(n); vector<int> arrlist; for (int i = n - 1; i >= 0; i--) { if (height(i + 1) == h) arrlist.push_back(arr[i]); else if (height(i + 1) == h - 1 && n <= ((2 * i) + 1)) // if the height if h-1, // then there should not // be any child nodes arrlist.push_back(arr[i]); else break; } prLeafNodes(arrlist);}// Driver Codeint main(){ int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; int n = sizeof(arr) / sizeof(arr[0]); findLeafNodes(arr, n); return 0;}// This code is contributed by adityamaharshi21 |
Java
// Java implementation to print// the leaf nodes of a Binary Heapimport java.lang.*;import java.util.*;class GFG { // Function to calculate height // of the Binary heap with given // the count of the nodes static int height(int N) { return (int)Math.ceil( Math.log(N + 1) / Math.log(2)) - 1; } // Function to find the leaf // nodes of binary heap static void findLeafNodes( int arr[], int n) { // Calculate the height of // the complete binary tree int h = height(n); ArrayList<Integer> arrlist = new ArrayList<>(); for (int i = n - 1; i >= 0; i--) { if (height(i + 1) == h) { arrlist.add(arr[i]); } else if (height(i + 1) == h - 1 && n <= ((2 * i) + 1)) { // if the height if h-1, // then there should not // be any child nodes arrlist.add(arr[i]); } else { break; } } printLeafNodes(arrlist); } // Function to print the leaf nodes static void printLeafNodes( ArrayList<Integer> arrlist) { for (int i = arrlist.size() - 1; i >= 0; i--) { System.out.print( arrlist.get(i) + " "); } } // Driver Code public static void main(String[] args) { int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; findLeafNodes(arr, arr.length); }} |
C#
// C# implementation to print// the leaf nodes of a Binary Heapusing System;using System.Collections.Generic;class GFG{// Function to calculate height// of the Binary heap with given// the count of the nodesstatic int height(int N){ return (int)Math.Ceiling( Math.Log(N + 1) / Math.Log(2)) - 1;}// Function to find the leaf// nodes of binary heapstatic void findLeafNodes(int []arr, int n){ // Calculate the height of // the complete binary tree int h = height(n); List<int> arrlist = new List<int>(); for (int i = n - 1; i >= 0; i--) { if (height(i + 1) == h) { arrlist.Add(arr[i]); } else if (height(i + 1) == h - 1 && n <= ((2 * i) + 1)) { // if the height if h-1, // then there should not // be any child nodes arrlist.Add(arr[i]); } else { break; } } printLeafNodes(arrlist);}// Function to print the leaf nodesstatic void printLeafNodes(List<int> arrlist){ for (int i = arrlist.Count - 1; i >= 0; i--) { Console.Write(arrlist[i] + " "); }}// Driver Codepublic static void Main(String[] args){ int []arr = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; findLeafNodes(arr, arr.Length);}}// This code is contributed by Princi Singh |
Python3
# Python3 implementation to print# the leaf nodes of a Binary Heapimport mathdef height(N): return math.log(N + 1) // math.log(2) # Function to find the leaf# nodes of binary heapdef findLeafNodes(arr, n): # Calculate the height of # the complete binary tree h = height(n) arrlist = [] for i in range(n - 1,-1,-1): if (height(i + 1) == h): arrlist.append(arr[i]) elif (height(i + 1) == h - 1 and n <= ((2 * i) + 1)): # if the height if h-1, # then there should not # be any child nodes arrlist.append(arr[i]) else: break prLeafNodes(arrlist) # Function to pr the leaf nodesdef prLeafNodes(arrlist): for i in range(len(arrlist) - 1,-1,-1): print(arrlist[i],end=" ") # Driver Codearr = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]findLeafNodes(arr, len(arr))# This code is contributed by shinjanpatra |
Javascript
<script>// JavaScript implementation to print// the leaf nodes of a Binary Heapfunction height(N){ return Math.floor(Math.log(N + 1) / Math.log(2))} // Function to find the leaf// nodes of binary heapfunction findLeafNodes(arr, n){ // Calculate the height of // the complete binary tree let h = height(n) let arrlist = [] for(let i = n - 1;i >= 0 ;i--){ if (height(i + 1) == h) arrlist.push(arr[i]) else if (height(i + 1) == h - 1 && n <= ((2 * i) + 1)) // if the height if h-1, // then there should not // be any child nodes arrlist.push(arr[i]) else break } prLeafNodes(arrlist)} // Function to pr the leaf nodesfunction prLeafNodes(arrlist){ for(let i = arrlist.length - 1 ; i>=-0; i--) document.write(arrlist[i]," ")} // Driver Codelet arr = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]findLeafNodes(arr, arr.length)// This code is contributed by shinjanpatra</script> |
Output:
6 7 8 9 10
Performance Analysis:
- Time Complexity: O(L), where L is the number of leaf nodes.
- Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



