Skewness of statistical data

Given data in an array. Find skewness of the data distribution.
Skewness is a measure of the asymmetry of data distribution. Skewness is an asymmetry in a statistical distribution, in which the curve appears distorted or skewed either to the left or to the right. Skewness can be quantified to define the extent to which a distribution differs from a normal distribution. Skewness can be calculated as
Where gamma is called skewness
sigma is called standard deviation and sigma square can be calculated as
N is number of population and
mu is called mean of data.
Examples :
Input : arr[] = {2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2}
Output : 0.777001
Input : arr[] = {5, 20, 40, 80, 100}
Output : 0.0980392
Implementation:
C++
// CPP code to find skewness// of statistical data.#include<bits/stdc++.h>using namespace std;// Function to calculate// mean of data.float mean(float arr[], int n){ float sum = 0; for (int i = 0; i < n; i++) sum = sum + arr[i]; return sum / n;}// Function to calculate standard// deviation of data.float standardDeviation(float arr[], int n){ float sum = 0; // find standard deviation // deviation of data. for (int i = 0; i < n; i++) sum = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return sqrt(sum / n);}// Function to calculate skewness.float skewness(float arr[], int n){ // Find skewness using above formula float sum = 0; for (int i = 0; i < n; i++) sum = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return sum / (n * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n));}// Driver functionint main(){ float arr[] = {2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2}; // calculate size of array. int n = sizeof(arr)/sizeof(arr[0]); // skewness Function call cout << skewness(arr, n); return 0;} |
Java
// java code to find skewness// of statistical data.import java.io.*;class GFG { // Function to calculate // mean of data. static double mean(double arr[], int n) { double sum = 0; for (int i = 0; i < n; i++) sum = sum + arr[i]; return sum / n; } // Function to calculate standard // deviation of data. static double standardDeviation(double arr[], int n) { double sum = 0 ; // find standard deviation // deviation of data. for (int i = 0; i < n; i++) sum = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return Math.sqrt(sum / n); } // Function to calculate skewness. static double skewness(double arr[], int n) { // Find skewness using // above formula double sum = 0; for (int i = 0; i < n; i++) sum = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return sum / (n * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n)); } // Driver function public static void main (String[] args) { double arr[] = { 2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2 }; // calculate size of array. int n = arr.length; // skewness Function call System.out.println(skewness(arr, n)); }}//This code is contributed by vt_m |
Python3
# Python3 code to find skewness# of statistical data.from math import sqrt# Function to calculate# mean of data.def mean(arr, n): summ = 0 for i in range(n): summ = summ + arr[i] return summ / n# Function to calculate standard# deviation of data.def standardDeviation(arr,n): summ = 0 # find standard deviation # deviation of data. for i in range(n): summ = (arr[i] - mean(arr, n)) *(arr[i] - mean(arr, n)) return sqrt(summ / n)# Function to calculate skewness.def skewness(arr, n): # Find skewness using above formula summ = 0 for i in range(n): summ = (arr[i] - mean(arr, n))*(arr[i] - mean(arr, n))*(arr[i] - mean(arr, n)) return summ / (n * standardDeviation(arr, n) *standardDeviation(arr, n) *standardDeviation(arr, n) * standardDeviation(arr, n))# Driver functionarr = [2.5, 3.7, 6.6, 9.1,9.5, 10.7, 11.9, 21.5,22.6, 25.2] # calculate size of array.n = len(arr)# skewness Function callprint('%.6f'%skewness(arr, n))# This code is contributed by shubhamsingh10 |
C#
// C# code to find skewness// of statistical data.using System;class GFG { // Function to calculate // mean of data. static float mean(double []arr, int n) { double sum = 0; for (int i = 0; i < n; i++) sum = sum + arr[i]; return (float)sum / n; } // Function to calculate standard // deviation of data. static float standardDeviation(double []arr, int n) { double sum = 0 ; // find standard deviation // deviation of data. for (int i = 0; i < n; i++) sum = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return (float)Math.Sqrt(sum / n); } // Function to calculate skewness. static float skewness(double []arr, int n) { // Find skewness using // above formula double sum = 0; for (int i = 0; i < n; i++) sum = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return (float)sum / (n * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n)); } // Driver function public static void Main () { double []arr = { 2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2 }; // calculate size of array. int n = arr.Length; // skewness Function call Console.WriteLine(skewness(arr, n)); }}// This code is contributed by vt_m |
PHP
<?php// PHP code to find skewness// of statistical data.// Function to calculate// mean of data.function mean( $arr, $n){ $sum = 0; for ($i = 0; $i < $n; $i++) $sum = $sum + $arr[$i]; return $sum / $n;}// Function to calculate standard// deviation of data.function standardDeviation($arr, $n){ $sum = 0; // find standard deviation // deviation of data. for ($i = 0; $i < $n; $i++) $sum = ($arr[$i] - mean($arr, $n)) * ($arr[$i] - mean($arr, $n)); return sqrt($sum / $n);}// Function to calculate skewness.function skewness($arr, $n){ // Find skewness using above formula $sum = 0; for ($i = 0; $i < $n; $i++) $sum = ($arr[$i] - mean($arr, $n)) * ($arr[$i] - mean($arr, $n)) * ($arr[$i] - mean($arr, $n)); return $sum / ($n * standardDeviation($arr, $n) * standardDeviation($arr, $n) * standardDeviation($arr, $n) * standardDeviation($arr, $n));}// Driver Code$arr = array(2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2); // calculate size of array.$n = count($arr);// skewness Function callecho skewness($arr, $n);// This code is contributed by vt_m?> |
Javascript
<script> // JavaScript code to find skewness // of statistical data. // Function to calculate // mean of data. function mean(arr, n) { let sum = 0; for (let i = 0; i < n; i++) sum = sum + arr[i]; return sum / n; } // Function to calculate standard // deviation of data. function standardDeviation(arr, n) { let sum = 0 ; // find standard deviation // deviation of data. for (let i = 0; i < n; i++) sum = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return Math.sqrt(sum / n); } // Function to calculate skewness. function skewness(arr, n) { // Find skewness using // above formula let sum = 0; for (let i = 0; i < n; i++) sum = (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)) * (arr[i] - mean(arr, n)); return sum / (n * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n) * standardDeviation(arr, n)); } let arr = [ 2.5, 3.7, 6.6, 9.1, 9.5, 10.7, 11.9, 21.5, 22.6, 25.2 ]; // calculate size of array. let n = arr.length; // skewness Function call document.write(skewness(arr, n).toFixed(6)); </script> |
Output
0.777001
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




