Count numbers that does not contain digit N in given range

Given integers, N, L, and R, the task is to find the number of integers in the range L to R that does not contain the digit N. print the answer modulo 109 + 7. ( L ? R ? 101000000)
Examples:
Input: N = 5, L = 1, R = 10
Output: 9
Explanation: excluding all 5 others from 1 to 10 will be included in the answer.Input: N = 5, L = 1, R = 100
Output: 81
Explanation: Excluding 5, 15, 25, 35, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 65, 75, 85, and 95 all numbers from 1 to 100 will be included in the answer
Naive approach: The basic way to solve the problem is as follows:
The basic way to solve this problem is to generate all possible combinations by using a recursive approach.
Time Complexity: O(18N), Where N is the number of digits to be filled.
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized based on the following idea:
Dynamic programming can be used to solve this problem
- dp[i][j] represents numbers in the range with i digits and j represents tight condition.
- It can be observed that the recursive function is called exponential times. That means that some states are called repeatedly.
- So the idea is to store the value of each state. This can be done using by store the value of a state and whenever the function is called, return the stored value without computing again.
- First answer will be calculated for 0 to A – 1 and then calculated for 0 to B then latter one is subtracted with prior one to get answer for range [L, R]
Follow the steps below to solve the problem:
- Create a recursive function that takes two parameters i representing the position to be filled and j representing the tight condition.
- Call the recursive function for choosing all digits from 0 to 9 apart from N.
- Base case if size digit formed return 1;
- Create a 2d array dp[N][2] initially filled with -1.
- If the answer for a particular state is computed then save it in dp[i][j].
- If the answer for a particular state is already computed then just return dp[i][j].
Below is the implementation of the above approach:
C++
// C++ code to implement the approach#include <bits/stdc++.h>using namespace std;const int MOD = 1e9 + 7;// dp table initialized with -1int dp[100001][2];// Recursive Function to find numbers// in the range L to R such that they// do not contain digit Nint recur(int i, int j, int N, string& a){ // Base case if (i == a.size()) { return 1; } // If answer for current state is already // calculated then just return dp[i][j] if (dp[i][j] != -1) return dp[i][j]; // Answer initialized with zero int ans = 0; // Tight condition true if (j == 1) { // Iterating from 0 to max value // of tight condition cout<<((int)a[i] - 48)<<endl; for (int k = 0; k <= ((int)a[i] - 48); k++) { // N is not allowed to use if (k == N) continue; // When k is at max tight condition // remains even in next state if (k == ((int)a[i] - 48)) // Calling recursive function // for tight digit ans += recur(i + 1, 1, N, a); // Tight condition drops else // Calling recursive function // for digits less than tight // condition digit ans += recur(i + 1, 0, N, a); } } // Tight condition false else { // Iterating for all digits for (int k = 0; k <= 9; k++) { // Digit N is not possible if (k == N) continue; // Calling recursive function for // all digits from 0 to 9 ans += recur(i + 1, 0, N, a); } } // Save and return dp value return dp[i][j] = ans;}// Function to find numbers// in the range L to R such that they// do not contain digit Nint countInRange(int N, int A, int B){ // Initializing dp array with - 1 memset(dp, -1, sizeof(dp)); A--; string L = to_string(A), R = to_string(B); // Numbers with sum of digits T from // 1 to L - 1 int ans1 = recur(0, 1, N, L); // Initializing dp array with - 1 memset(dp, -1, sizeof(dp)); // Numbers with sum of digits T in the // range 1 to R int ans2 = recur(0, 1, N, R); // Difference of ans2 and ans1 // will generate answer for required // range return ans2 - ans1;}// Driver Codeint main(){ // Input 1 int N = 5, L = 1, R = 10; // Function Call cout << countInRange(N, L, R) << endl; // Input 2 //int N1 = 5, L1 = 1, R1 = 100; // Function Call //cout << countInRange(N1, L1, R1) << endl; return 0;} |
Java
// Java code to implement the approachimport java.io.*;import java.util.*;class GFG { static final int MOD = 1_000_000_007; // dp table initialized with -1 static int[][] dp = new int[100001][2]; // Recursive Function to find numbers // in the range L to R such that they // do not contain digit N static int recur(int i, int j, int N, String a) { // Base case if (i == a.length()) { return 1; } // If answer for current state is already // calculated then just return dp[i][j] if (dp[i][j] != -1) return dp[i][j]; // Answer initialized with zero int ans = 0; // Tight condition true if (j == 1) { // Iterating from 0 to max value // of tight condition for (int k = 0; k <= a.charAt(i) - '0'; k++) { // N is not allowed to use if (k == N) continue; // When k is at max tight condition // remains even in next state if (k == a.charAt(i) - '0') // Calling recursive function // for tight digit ans += recur(i + 1, 1, N, a); // Tight condition drops else ans += recur(i + 1, 0, N, a); } } // Tight condition false else { // Iterating for all digits for (int k = 0; k <= 9; k++) { // Digit N is not possible if (k == N) continue; // Calling recursive function for // all digits from 0 to 9 ans += recur(i + 1, 0, N, a); } } // Save and return dp value return dp[i][j] = ans; } // Function to find numbers // in the range L to R such that they // do not contain digit N static int countInRange(int N, int A, int B) { // Initializing dp array with - 1 for (int[] row : dp) { Arrays.fill(row, -1); } A--; String L = Integer.toString(A); String R = Integer.toString(B); // Numbers with sum of digits T from // 1 to L - 1 int ans1 = recur(0, 1, N, L); // Initializing dp array with - 1 for (int[] row : dp) { Arrays.fill(row, -1); } // Numbers with sum of digits T in the // range 1 to R int ans2 = recur(0, 1, N, R); // Difference of ans2 and ans1 // will generate answer for required // range return ans2 - ans1; } public static void main(String[] args) { // Input 1 int N = 5; int L = 1; int R = 10; // Function Call System.out.println(countInRange(N, L, R)); // Input 2 int N1 = 5; int L1 = 1; int R1 = 100; // Function Call System.out.println(countInRange(N1, L1, R1)); }}// This contributed by lokeshmvs21. |
Python3
# Python code to implement the approachMOD = 1e9 + 7;# dp table initialized with -1dp= [[-1]*(2) for _ in range(100001)];# Recursive Function to find numbers# in the range L to R such that they# do not contain digit Ndef recur(i, j, N, a): # Base case if (i == len(a)) : return 1; # If answer for current state is already # calculated then just return dp[i][j] if (dp[i][j] != -1): return dp[i][j]; # Answer initialized with zero ans = 0; # Tight condition true if (j == 1) : # Iterating from 0 to max value # of tight condition for k in range(0, int(a[i])+1): # N is not allowed to use if (k == N): continue; # When k is at max tight condition # remains even in next state if (k == int(a[i])): # Calling recursive function # for tight digit ans += recur(i + 1, 1, N, a); # Tight condition drops else: # Calling recursive function # for digits less than tight # condition digit ans += recur(i + 1, 0, N, a); # Tight condition false else : # Iterating for all digits for k in range(0,10): # Digit N is not possible if (k == N): continue; # Calling recursive function for # all digits from 0 to 9 ans += recur(i + 1, 0, N, a); # Save and return dp value dp[i][j]=ans; return dp[i][j];# Function to find numbers# in the range L to R such that they# do not contain digit Ndef countInRange( N, A, B): # Initializing dp array with - 1 for i in range(0,100001): for j in range(0,2): dp[i][j]=-1; A -= 1; L = str(A); R = str(B); # Numbers with sum of digits T from # 1 to L - 1 ans1 = recur(0, 1, N, L); # Initializing dp array with - 1 for i in range(0,100001): for j in range(0,2): dp[i][j]=-1; # Numbers with sum of digits T in the # range 1 to R ans2 = recur(0, 1, N, R); # Difference of ans2 and ans1 # will generate answer for required # range return ans2 - ans1;# Driver Code# Input 1N = 5;L = 1;R = 10;# Function Callprint(countInRange(N, L, R));# Input 2N1 = 5;L1 = 1;R1 = 100;# Function Callprint(countInRange(N1, L1, R1));# This code is contributed by agrawalpooja976. |
C#
using System;namespace GFG{ static class Program { static readonly int MOD = 1_000_000_007; // dp table initialized with -1 static int[,] dp = new int[100001, 2]; // Recursive Function to find numbers // in the range L to R such that they // do not contain digit N static int Recur(int i, int j, int N, string a) { // Base case if (i == a.Length) { return 1; } // If answer for current state is already // calculated then just return dp[i][j] if (dp[i, j] != -1) return dp[i, j]; // Answer initialized with zero int ans = 0; // Tight condition true if (j == 1) { // Iterating from 0 to max value // of tight condition for (int k = 0; k <= a[i] - '0'; k++) { // N is not allowed to use if (k == N) continue; // When k is at max tight condition // remains even in next state if (k == a[i] - '0') // Calling recursive function // for tight digit ans += Recur(i + 1, 1, N, a); // Tight condition drops else ans += Recur(i + 1, 0, N, a); } } // Tight condition false else { // Iterating for all digits for (int k = 0; k <= 9; k++) { // Digit N is not possible if (k == N) continue; // Calling recursive function for // all digits from 0 to 9 ans += Recur(i + 1, 0, N, a); } } // Save and return dp value return dp[i, j] = ans; } // Function to find numbers // in the range L to R such that they // do not contain digit N static int CountInRange(int N, int A, int B) { // Initializing dp array with - 1 for (int i = 0; i < dp.GetLength(0); i++) { for (int j = 0; j < dp.GetLength(1); j++) { dp[i, j] = -1; } } A--; string L = A.ToString(); string R = B.ToString(); // Numbers with sum of digits T from // 1 to L - 1 int ans1 = Recur(0, 1, N, L); // Initializing dp array with - 1 for (int i = 0; i < dp.GetLength(0); i++) { for (int j = 0; j < dp.GetLength(1); j++) { dp[i, j] = -1; } } // Numbers with sum of digits T in the // range 1 to R int ans2 = Recur(0, 1, N, R); // Difference of ans2 and ans1 // will generate answer for required // range return ans2 - ans1; } // Main Method static void Main(string[] args) { // Input 1 int N = 5; int L = 1; int R = 10; // Function Call Console.WriteLine(CountInRange(N, L, R)); // Input 2 int N1 = 5; int L1 = 1; int R1 = 100; // Function Call Console.WriteLine(CountInRange(N1, L1, R1)); } }}// This code is contributed by surajrasr7277 |
Javascript
// Javascript code to implement the approachlet MOD = 1e9 + 7;// dp table initialized with -1let dp = new Array(100001);for(let i=0; i<100001; i++) dp[i]= new Array(2);// Recursive Function to find numbers// in the range L to R such that they// do not contain digit Nfunction recur(i, j, N, a){ // Base case if (i == a.length) { return 1; } // If answer for current state is already // calculated then just return dp[i][j] if (dp[i][j] != -1) return dp[i][j]; // Answer initialized with zero let ans = 0; // Tight condition true if (j == 1) { // Iterating from 0 to max value // of tight condition for (let k = 0; k <= (parseInt(a[i])); k++) { // N is not allowed to use if (k == N) continue; // When k is at max tight condition // remains even in next state if (k == (parseInt(a[i]))) // Calling recursive function // for tight digit ans = ans + recur(i + 1, 1, N, a); // Tight condition drops else // Calling recursive function // for digits less than tight // condition digit ans = ans + recur(i + 1, 0, N, a); } } // Tight condition false else { // Iterating for all digits for (let k = 0; k <= 9; k++) { // Digit N is not possible if (k == N) continue; // Calling recursive function for // all digits from 0 to 9 ans += recur(i + 1, 0, N, a); } } // Save and return dp value return dp[i][j] = ans;}// Function to find numbers// in the range L to R such that they// do not contain digit Nfunction countInRange(N, A, B){ // Initializing dp array with - 1 for(let i=0; i<100001; i++) for(let j=0; j<2; j++) dp[i][j]=-1; A--; let L = A.toString(), R = B.toString(); // Numbers with sum of digits T from // 1 to L - 1 let ans1 = recur(0, 1, N, L); // Initializing dp array with - 1 for(let i=0; i<100001; i++) for(let j=0; j<2; j++) dp[i][j]=-1; // Numbers with sum of digits T in the // range 1 to R let ans2 = recur(0, 1, N, R); // Difference of ans2 and ans1 // will generate answer for required // range return ans2 - ans1;}// Driver Code // Input 1 let N = 5, L = 1, R = 10; // Function Call document.write(countInRange(N, L, R)); document.write("<br>"); // Input 2 let N1 = 5, L1 = 1, R1 = 100; // Function Call document.write(countInRange(N1, L1, R1)); |
9 81
Time Complexity: O(N), Where N is the number of digits to be filled
Auxiliary Space: O(N)
Related Articles:
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



