Minimum cost to reduce given number to less than equal to zero

Given array A[] and B[] of size N representing N type of operations. Given a number H, reduce this number to less than equal to 0 by performing the following operation at minimum cost. Choose ith operation and subtract A[i] from H and the cost incurred will be B[i]. Every operation can be performed any number of times.
Examples:
Input: A[] = {8, 4, 2}, B[] = {3, 2, 1}, H = 9
Output: 4
Explanation: The optimal way to solve this problem is to decrease the number H = 9 by the first operation reducing it by A[1] = 8 and the cost incurred is B[1] = 3. H is now 1. Use the third operation to reduce H = 1 by A[3] = 2 cost incurred will be B[3] = 1. Now H is -1 which is less than equal to 0 hence. in cost = 3 + 1 = 4 number H can be made less than equal to 0.Input: A[] = {1, 2, 3, 4, 5, 6}, B[] = {1, 3, 9, 27, 81, 243}, H = 100
Output: 100
Explanation: It is optimal to use the first operation 100 times to make H zero in minimum cost.
Naive approach: The basic way to solve the problem is as follows:
The basic way to solve this problem is to generate all possible combinations by using a recursive approach.
Time Complexity: O(HN)
Auxiliary Space: O(1)
Another approach : Recursive + Memoization
In this approach we find our answer with the help of recursion but to avoid recomputing of same problem we use use a vector memo to store the computations of subproblems.
Implementation :
C++
#include <bits/stdc++.h>using namespace std;// Function to find the minimum cost to make// number H less than or equal to zeroint findMinimumCost(int A[], int B[], int N, int H, vector<int>& memo){ // base case if (H <= 0) { return 0; } // check if the result is already computed if (memo[H] != -1) { return memo[H]; } int ans = INT_MAX; // recursive step for (int i = 0; i < N; i++) { ans = min(ans, findMinimumCost(A, B, N, H - A[i], memo) + B[i]); } // store the computed result in memo table memo[H] = ans; return ans;}// Driver Codeint main(){ // Test Case 1 int A[] = { 8, 4, 2 }, B[] = { 3, 2, 1 }, H = 9; int N = sizeof(A) / sizeof(A[0]); // Memo table to store the computed results vector<int> memo(H + 1, -1); // Function Call cout << findMinimumCost(A, B, N, H, memo) << endl; // Test Case 2 int A1[] = { 1, 2, 3, 4, 5, 6 }, B1[] = { 1, 3, 9, 27, 81, 243 }, H1 = 100; int N1 = sizeof(A1) / sizeof(A1[0]); // Memo table to store the computed results vector<int> memo1(H1 + 1, -1); // Function Call cout << findMinimumCost(A1, B1, N1, H1, memo1) << endl; return 0;} |
Java
import java.util.Arrays;public class GFG { // Function to find the minimum cost to make // number H less than or equal to zero public static int findMinimumCost(int[] A, int[] B, int N, int H, int[] memo) { // base case if (H <= 0) { return 0; } // check if the result is already computed if (memo[H] != -1) { return memo[H]; } int ans = Integer.MAX_VALUE; // recursive step for (int i = 0; i < N; i++) { ans = Math.min(ans, findMinimumCost( A, B, N, H - A[i], memo) + B[i]); } // store the computed result in memo table memo[H] = ans; return ans; } // Driver Code public static void main(String[] args) { // Test Case 1 int[] A = { 8, 4, 2 }; int[] B = { 3, 2, 1 }; int H = 9; int N = A.length; // Memo table to store the computed results int[] memo = new int[H + 1]; Arrays.fill(memo, -1); // Function Call System.out.println( findMinimumCost(A, B, N, H, memo)); // Test Case 2 int[] A1 = { 1, 2, 3, 4, 5, 6 }; int[] B1 = { 1, 3, 9, 27, 81, 243 }; int H1 = 100; int N1 = A1.length; // Memo table to store the computed results int[] memo1 = new int[H1 + 1]; Arrays.fill(memo1, -1); // Function Call System.out.println( findMinimumCost(A1, B1, N1, H1, memo1)); }} |
Python
# Function to find the minimum cost to make# number H less than or equal to zerodef findMinimumCost(A, B, N, H, memo): # Base case if H <= 0: return 0 # Check if the result is already computed if memo[H] != -1: return memo[H] ans = float('inf') # Recursive step for i in range(N): ans = min(ans, findMinimumCost(A, B, N, H - A[i], memo) + B[i]) # Store the computed result in memo table memo[H] = ans return ans# Driver Codeif __name__ == "__main__": # Test Case 1 A = [8, 4, 2] B = [3, 2, 1] H = 9 N = len(A) # Memo table to store the computed results memo = [-1] * (H + 1) # Function Call print(findMinimumCost(A, B, N, H, memo)) # Test Case 2 A1 = [1, 2, 3, 4, 5, 6] B1 = [1, 3, 9, 27, 81, 243] H1 = 100 N1 = len(A1) # Memo table to store the computed results memo1 = [-1] * (H1 + 1) # Function Call print(findMinimumCost(A1, B1, N1, H1, memo1)) |
C#
using System;using System.Collections.Generic;class Gfg{ // Function to find the minimum cost to make // number H less than or equal to zero static int findMinimumCost(int[] A, int[] B, int N, int H, List<int> memo) { // Base case if (H <= 0) { return 0; } // Check if the result is already computed if (memo[H] != -1) { return memo[H]; } int ans = int.MaxValue; // Recursive step for (int i = 0; i < N; i++) { ans = Math.Min(ans, findMinimumCost(A, B, N, H - A[i], memo) + B[i]); } // Store the computed result in the memo table memo[H] = ans; return ans; } static void Main(string[] args) { // Test Case 1 int[] A = { 8, 4, 2 }; int[] B = { 3, 2, 1 }; int H = 9; int N = A.Length; // Memo table to store the computed results List<int> memo = new List<int>(new int[H + 1]); for (int i = 0; i <= H; i++) { memo[i] = -1; } // Function Call Console.WriteLine(findMinimumCost(A, B, N, H, memo)); // Test Case 2 int[] A1 = { 1, 2, 3, 4, 5, 6 }; int[] B1 = { 1, 3, 9, 27, 81, 243 }; int H1 = 100; int N1 = A1.Length; // Memo table to store the computed results List<int> memo1 = new List<int>(new int[H1 + 1]); for (int i = 0; i <= H1; i++) { memo1[i] = -1; } // Function Call Console.WriteLine(findMinimumCost(A1, B1, N1, H1, memo1)); }} |
Javascript
// Function to find the minimum cost to make// number H less than or equal to zerofunction findMinimumCost(A, B, N, H, memo){ // base case if (H <= 0) { return 0; } // check if the result is already computed if (memo[H] != -1) { return memo[H]; } let ans = Number.MAX_VALUE; // recursive step for (let i = 0; i < N; i++) { ans = Math.min(ans, findMinimumCost(A, B, N, H - A[i], memo) + B[i]); } // store the computed result in memo table memo[H] = ans; return ans;}// Test Case 1let A = [ 8, 4, 2 ], B = [ 3, 2, 1 ], H = 9;let N = A.length;// Memo table to store the computed resultslet memo=new Array(H + 1).fill(-1);// Function Callconsole.log(findMinimumCost(A, B, N, H, memo));// Test Case 2let A1 = [ 1, 2, 3, 4, 5, 6 ], B1 = [ 1, 3, 9, 27, 81, 243 ], H1 = 100;let N1 = A1.length;// Memo table to store the computed resultslet memo1=new Array(H1 + 1).fill(-1);// Function Callconsole.log(findMinimumCost(A1, B1, N1, H1, memo1)); |
4 100
Time Complexity: O(N * H)
Auxiliary Space: O(H)
Efficient Approach: The above approach can be optimized based on the following idea:
Dynamic programming can be used to solve this problem
- dp[i] represents a minimum cost to make I zero from given operations
- recurrence relation: dp[i] = min(dp[i], dp[max(0, i – A[i])] + B[i])
Follow the steps below to solve the problem:
- Declare a dp table of size H + 1 with all values initialized to infinity
- Base case dp[0] = 0
- Iterate from 1 to H to calculate a value for each of them and to do that use all operations from 0 to j and try to make i zero by the minimum cost of these operations.
- Finally, return minimum cost dp[H]
Below is the implementation of the above approach:
C++
// C++ code to implement the approach#include <bits/stdc++.h>using namespace std;// Minimum cost to make number H// less than equal to zeroint findMinimumCost(int A[], int B[], int N, int H){ // Declaring dp array initially all values // infinity vector<int> dp(H + 1, INT_MAX); // base case dp[0] = 0; // Calculating minimum cost for each i // from 1 to H for (int i = 1; i <= H; i++) { for (int j = 0; j < N; j++) { dp[i] = min(dp[i], dp[max(0, i - A[j])] + B[j]); } } // Returning the answer return dp[H];}// Driver Codeint main(){ // Test Case 1 int A[] = { 8, 4, 2 }, B[] = { 3, 2, 1 }, H = 9; int N = sizeof(A) / sizeof(A[0]); // Function Call cout << findMinimumCost(A, B, N, H) << endl; // Test Case 2 int A1[] = { 1, 2, 3, 4, 5, 6 }, B1[] = { 1, 3, 9, 27, 81, 243 }, H1 = 100; int N1 = sizeof(A1) / sizeof(A1[0]); // Function Call cout << findMinimumCost(A1, B1, N1, H1) << endl; return 0;} |
Java
// Java code to implement the approachimport java.io.*;class GFG { // Minimum cost to make number H // less than equal to zero public static int findMinimumCost(int A[], int B[], int N, int H) { // Declaring dp array initially all values // infinity int dp[] = new int[H + 1]; for (int i = 0; i < H + 1; i++) dp[i] = Integer.MAX_VALUE; // base case dp[0] = 0; // Calculating minimum cost for each i // from 1 to H for (int i = 1; i <= H; i++) { for (int j = 0; j < N; j++) { int x = Math.max(0, i - A[j]); dp[i] = Math.min(dp[i], dp[x] + B[j]); } } // Returning the answer return dp[H]; } // Driver Code public static void main(String[] args) { // Test Case 1 int A[] = { 8, 4, 2 }, B[] = { 3, 2, 1 }, H = 9; int N = A.length; // Function Call System.out.println(findMinimumCost(A, B, N, H)); // Test Case 2 int A1[] = { 1, 2, 3, 4, 5, 6 }, B1[] = { 1, 3, 9, 27, 81, 243 }, H1 = 100; int N1 = A1.length; // Function Call System.out.println(findMinimumCost(A1, B1, N1, H1)); }}// This code is contributed by Rohit Pradhan |
Python3
# Python code to implement the approachimport sys# Minimum cost to make number H# less than equal to zerodef findMinimumCost(A, B, N, H): # Declaring dp array initially all values # infinity dp =[sys.maxsize]*(H + 1) # base case dp[0]= 0 # Calculating minimum cost for each i # from 1 to H for i in range(1, H + 1): for j in range(N): dp[i] = min(dp[i], dp[max(0, i - A[j])] + B[j]) # Returning the answer return dp[H] # Driver Code# Test Case 1A =[8, 4, 2]B =[3, 2, 1]H = 9N = len(A)# Function Callprint(findMinimumCost(A, B, N, H))# Test Case 2A1 =[1, 2, 3, 4, 5, 6]B1 =[1, 3, 9, 27, 81, 243]H1 = 100N1 = len(A)# Function Callprint(findMinimumCost(A1, B1, N1, H1))# This code is contributed by Pushpesh Raj. |
C#
// C# code to implement the approachusing System;using System.Collections.Generic;public class Gfg { // Minimum cost to make number H // less than equal to zero static int findMinimumCost(int[] A, int[] B, int N, int H) { // Declaring dp array initially all values // infinity // vector<int> dp(H + 1, INT_MAX); int[] dp = new int[H + 1]; for (int i = 0; i < H + 1; i++) dp[i] = 2147483647; // base case dp[0] = 0; // Calculating minimum cost for each i // from 1 to H for (int i = 1; i <= H; i++) { for (int j = 0; j < N; j++) { int x = Math.Max(0, i - A[j]); dp[i] = Math.Min(dp[i], dp[x] + B[j]); } } // Returning the answer return dp[H]; } // Driver Code public static void Main(string[] args) { // Test Case 1 int[] A = { 8, 4, 2 }; int[] B = { 3, 2, 1 }; int H = 9; int N = A.Length; // Function Call Console.WriteLine(findMinimumCost(A, B, N, H)); // Test Case 2 int[] A1 = { 1, 2, 3, 4, 5, 6 }; int[] B1 = { 1, 3, 9, 27, 81, 243 }; int H1 = 100; int N1 = A1.Length; // Function Call Console.WriteLine(findMinimumCost(A1, B1, N1, H1)); }}// This code is contributed by poojaagarwal2. |
Javascript
// JS code to implement the approach // Minimum cost to make number H // less than equal to zero function findMinimumCost(A, B, N, H) { // Declaring dp array initially all values // infinity let dp = new Array(H + 1).fill(Number.MAX_VALUE); // base case dp[0] = 0; // Calculating minimum cost for each i // from 1 to H for (let i = 1; i <= H; i++) { for (let j = 0; j < N; j++) { let x = Math.max(0, i - A[j]); dp[i] = Math.min(dp[i], dp[x] + B[j]); } } // Returning the answer return dp[H]; } // Driver Code // Test Case 1 let A = [8, 4, 2], B = [3, 2, 1], H = 9; let N = A.length; // Function Call console.log(findMinimumCost(A, B, N, H) + "<br>"); // Test Case 2 let A1 = [1, 2, 3, 4, 5, 6], B1 = [1, 3, 9, 27, 81, 243], H1 = 100; let N1 = A1.length; // Function Call console.log(findMinimumCost(A1, B1, N1, H1) + "<br>");// This code is contributed by Potta Lokesh |
4 100
Time Complexity: O(N * H)
Auxiliary Space: O(N * H)
Related Articles:
- Introduction to Dynamic Programming – Data Structures and Algorithms Tutorials
- Introduction to Arrays – Data Structures and Algorithms
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



