Number of ways to divide string in sub-strings such to make them in lexicographically increasing sequence
Given a string S, the task is to find the number of ways to divide/partition the given string in sub-strings S1, S2, S3, …, Sk such that S1 < S2 < S3 < … < Sk (Lexicographically).
Examples:
Input: S = “aabc”
Output: 6
Following are the allowed partitions:
{“aabc”}, {“aa”, “bc”}, {“aab”, “c”}, {“a”, “abc”},
{“a, “ab”, “c”} and {“aa”, “b”, “c”}.Input: S = “za”
Output: 1
Only possible partition is {“za”}.
Approach: This problem can be solved using dynamic programming.
- Define DP[i][j] as the number of ways to divide the sub-string S[0…j] such that S[i, j] is the last partition.
- Now, the recurrence relations will be DP[i][j] = Summation of (DP[k][i – 1]) for all k ? 0 and i ? N – 1 where N is the length of the string.
- Final answer will be the summation of (DP[i][N – 1]) for all i between 0 to N – 1 as these sub-strings will become the last partition in some possible way of partitioning.
- So, here for all the sub-strings S[i][j], find the sub-string S[k][i – 1] such that S[k][i – 1] is lexicographically less than S[i][j] and add DP[k][i – 1] to DP[i][j].
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the number of // ways of partitioning int ways(string s, int n) { int dp[n][n]; // Initialize DP table for ( int i = 0; i < n; i++) for ( int j = 0; j < n; j++) { dp[i][j] = 0; } // Base Case for ( int i = 0; i < n; i++) dp[0][i] = 1; for ( int i = 1; i < n; i++) { // To store sub-string S[i][j] string temp; for ( int j = i; j < n; j++) { temp += s[j]; // To store sub-string S[k][i-1] string test; for ( int k = i - 1; k >= 0; k--) { test += s[k]; if (test < temp) { dp[i][j] += dp[k][i - 1]; } } } } int ans = 0; for ( int i = 0; i < n; i++) { // Add all the ways where S[i][n-1] // will be the last partition ans += dp[i][n - 1]; } return ans; } // Driver code int main() { string s = "aabc" ; int n = s.length(); cout << ways(s, n); return 0; } |
Java
// Java implementation of the above approach class GFG { // Function to return the number of // ways of partitioning static int ways(String s, int n) { int dp[][] = new int [n][n]; // Initialize DP table for ( int i = 0 ; i < n; i++) for ( int j = 0 ; j < n; j++) { dp[i][j] = 0 ; } // Base Case for ( int i = 0 ; i < n; i++) dp[ 0 ][i] = 1 ; for ( int i = 1 ; i < n; i++) { // To store sub-string S[i][j] String temp = "" ; for ( int j = i; j < n; j++) { temp += s.charAt(j); // To store sub-string S[k][i-1] String test = "" ; for ( int k = i - 1 ; k >= 0 ; k--) { test += s.charAt(k); if (test.compareTo(temp) < 0 ) { dp[i][j] += dp[k][i - 1 ]; } } } } int ans = 0 ; for ( int i = 0 ; i < n; i++) { // Add all the ways where S[i][n-1] // will be the last partition ans += dp[i][n - 1 ]; } return ans; } // Driver code public static void main (String[] args) { String s = "aabc" ; int n = s.length(); System.out.println(ways(s, n)); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 implementation of the approach # Function to return the number of # ways of partitioning def ways(s, n): dp = [[ 0 for i in range (n)] for i in range (n)] # Base Case for i in range (n): dp[ 0 ][i] = 1 for i in range ( 1 , n): # To store sub-S[i][j] temp = "" for j in range (i, n): temp + = s[j] # To store sub-S[k][i-1] test = "" for k in range (i - 1 , - 1 , - 1 ): test + = s[k] if (test < temp): dp[i][j] + = dp[k][i - 1 ] ans = 0 for i in range (n): # Add all the ways where S[i][n-1] # will be the last partition ans + = dp[i][n - 1 ] return ans # Driver code s = "aabc" n = len (s) print (ways(s, n)) # This code is contributed by Mohit Kumarv |
C#
// C# implementation of the above approach using System; class GFG { // Function to return the number of // ways of partitioning static int ways(String s, int n) { int [,]dp = new int [n, n]; // Initialize DP table for ( int i = 0; i < n; i++) for ( int j = 0; j < n; j++) { dp[i, j] = 0; } // Base Case for ( int i = 0; i < n; i++) dp[0, i] = 1; for ( int i = 1; i < n; i++) { // To store sub-string S[i,j] String temp = "" ; for ( int j = i; j < n; j++) { temp += s[j]; // To store sub-string S[k,i-1] String test = "" ; for ( int k = i - 1; k >= 0; k--) { test += s[k]; if (test.CompareTo(temp) < 0) { dp[i, j] += dp[k, i - 1]; } } } } int ans = 0; for ( int i = 0; i < n; i++) { // Add all the ways where S[i,n-1] // will be the last partition ans += dp[i, n - 1]; } return ans; } // Driver code public static void Main (String[] args) { String s = "aabc" ; int n = s.Length; Console.WriteLine(ways(s, n)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the approach // Function to return the number of // ways of partitioning function ways(s, n) { var dp = Array.from(Array(n), ()=> Array(n).fill(0)); // Base Case for ( var i = 0; i < n; i++) dp[0][i] = 1; for ( var i = 1; i < n; i++) { // To store sub-string S[i][j] var temp; for ( var j = i; j < n; j++) { temp += s[j]; // To store sub-string S[k][i-1] var test; for ( var k = i - 1; k >= 0; k--) { test += s[k]; if (test < temp) { dp[i][j] += dp[k][i - 1]; } } } } var ans = 0; for ( var i = 0; i < n; i++) { // Add all the ways where S[i][n-1] // will be the last partition ans += dp[i][n - 1]; } return ans; } // Driver code var s = "aabc" ; var n = s.length; document.write( ways(s, n)); // This code is contributed by itsok. </script> |
Output:
6
Time Complexity: O(n2)
Auxiliary Space: O(n2)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!