Number of ways to paint K cells in 3 x N grid such that no P continuous columns are left unpainted
Given three integers N, P and K, the task is to find the number of ways of painting K cells of 3 x N grid such that no adjacent cells are painted and also no continuous P columns are left unpainted.Â
Note: Diagonal cells are not considered as adjacent cells.Â
Examples:Â
Â
Input: N = 1, P = 3, K = 1Â
Output: 3Â
There are 3 ways to paint 1 cell in a 3 x 1 grid.
Input: N = 2, P = 2, K = 2Â
Output: 8Â
There are 8 ways to paint 2 cells in a 3×2 grid.Â
Combinations of cells those are painted is shown below –Â
1) (0, 0) and (1, 1)Â
2) (0, 0) and (2, 1)Â
3) (0, 0) and (2, 0)Â
4) (1, 0) and (0, 1)Â
5) (1, 0) and (2, 1)Â
6) (2, 0) and (0, 1)Â
7) (2, 0) and (1, 1)Â
8) (0, 1) and (2, 1)Â
Â
Â
Approach: The idea is to use Dynamic Programming to solve this problem. As we know from the problem thatÂ
Â
column can be painted only whenÂ
Â
column is not painted. IfÂ
Â
column is not painted then we have following five cases –Â
Â
Â
- Paint the first Row.
- Paint the second row.
- Paint the third row.
- Paint first and third row.
- Leave the current column if atleast one
- column is painted.
Â
Therefore, using this fact we can solve this problem easily.Â
Below is the implementation of the above approach:Â
Â
Â
C++
// C++ implementation to find the // number of ways to paint K cells of // 3 x N grid such that No two adjacent // cells are painted Â
#include <bits/stdc++.h> using namespace std; Â
int mod = 1e9 + 7; #define MAX 301 #define MAXP 3 #define MAXK 600 #define MAXPREV 4 Â
int dp[MAX][MAXP + 1][MAXK][MAXPREV + 1]; Â
// Visited array to keep track // of which columns were painted bool vis[MAX]; Â
// Recursive Function to compute the // number of ways to paint the K cells // of the 3 x N grid int helper( int col, int prevCol, Â Â Â Â Â Â Â Â Â Â Â int painted, int prev, Â Â Â Â Â Â Â Â Â Â Â int N, int P, int K) { Â
    // Condition to check if total     // cells painted are K     if (painted >= K) {         int continuousCol = 0;         int maxContinuousCol = 0; Â
        // Check if any P continuous         // columns were left unpainted         for ( int i = 0; i < N; i++) { Â
            if (vis[i] == false )                 continuousCol++;             else {                 maxContinuousCol                     = max(maxContinuousCol,                           continuousCol);                 continuousCol = 0;             }         } Â
        maxContinuousCol = max(             maxContinuousCol,             continuousCol); Â
        // Condition to check if no P         // continuous columns were         // left unpainted         if (maxContinuousCol < P)             return 1; Â
        // return 0 if there are P         // continuous columns are         // left unpainted         return 0;     } Â
    // Condition to check if No     // further cells can be     // painted, so return 0     if (col >= N)         return 0; Â
    // if already calculated the value     // return the val instead     // of calculating again     if (dp[col][prevCol][painted][prev] != -1)         return dp[col][prevCol][painted][prev]; Â
    int res = 0; Â
    // Previous column was not painted     if (prev == 0) { Â
        // Column is painted so,         // make vis[col]=true         vis[col] = true ;         res += (helper(                    col + 1, 0, painted + 1,                    1, N, P, K))                % mod; Â
        res += (helper(                    col + 1, 0, painted + 1,                    2, N, P, K))                % mod; Â
        res += (helper(                    col + 1, 0, painted + 1,                    3, N, P, K))                % mod; Â
        // Condition to check if the number         // of cells to be painted is equal         // to or more than 2, then we can         // paint first and third row         if (painted + 2 <= K) {             res                 += (helper(                        col + 1, 0, painted + 2,                        4, N, P, K))                    % mod;         }         vis[col] = false ; Â
        // Condition to check if number of         // previous continuous columns left         // unpainted is less than P         if (prevCol + 1 < P) {             res                 += (helper(                        col + 1, prevCol + 1,                        painted, 0, N, P, K))                    % mod;         }     } Â
    // Condition to check if first row     // was painted in previous column     else if (prev == 1) {         vis[col] = true ;         res += (helper(                    col + 1, 0, painted + 1,                    2, N, P, K))                % mod;         res += (helper(                    col + 1, 0, painted + 1,                    3, N, P, K))                % mod;         vis[col] = false ;         if (prevCol + 1 < P) {             res += (helper(                        col + 1, prevCol + 1,                        painted, 0, N, P, K))                    % mod;         }     } Â
    // Condition to check if second row     // was painted in previous column     else if (prev == 2) {         vis[col] = true ;         res += (helper(                    col + 1, 0, painted + 1,                    1, N, P, K))                % mod;         res += (helper(                    col + 1, 0, painted + 1,                    3, N, P, K))                % mod; Â
        // Condition to check if the number         // of cells to be painted is equal to         // or more than 2, then we can         // paint first and third row         if (painted + 2 <= K) {             res                 += (helper(                        col + 1, 0, painted + 2,                        4, N, P, K))                    % mod;         }         vis[col] = false ;         if (prevCol + 1 < P) {             res                 += (helper(                        col + 1, prevCol + 1,                        painted, 0, N, P, K))                    % mod;         }     } Â
    // Condition to check if third row     // was painted in previous column     else if (prev == 3) {         vis[col] = true ;         res += (helper(                    col + 1, 0, painted + 1,                    1, N, P, K))                % mod;         res += (helper(                    col + 1, 0, painted + 1,                    2, N, P, K))                % mod;         vis[col] = false ;         if (prevCol + 1 < P) {             res += (helper(                        col + 1, prevCol + 1,                        painted, 0, N, P, K))                    % mod;         }     } Â
    // Condition to check if first and     // third row were painted     // in previous column     else {         vis[col] = true ;         res += (helper(                    col + 1, 0, painted + 1,                    2, N, P, K))                % mod;         vis[col] = false ;         if (prevCol + 1 < P) {             res += (helper(                        col + 1, prevCol + 1,                        painted, 0, N, P, K))                    % mod;         }     } Â
    // Memoize the data and return the     // Computed value     return dp[col][prevCol][painted][prev]            = res % mod; } Â
// Function to find the number of // ways to paint 3 x N grid int solve( int n, int p, int k) {     // Set all values     // of dp to -1;     memset (dp, -1, sizeof (dp)); Â
    // Set all values of Visited     // array to false     memset (vis, false , sizeof (vis)); Â
    return helper(0, 0, 0, 0, n, p, k); } Â
// Driver Code int main() { Â
    int N = 2, K = 2, P = 2;     cout << solve(N, P, K) << endl; Â
    return 0; } |
Java
// Java implementation to find the // number of ways to paint K cells of // 3 x N grid such that No two adjacent // cells are painted import java.util.*; Â
class GFG{ Â
static int mod = ( int )(1e9 + 7 ); static final int MAX = 301 ; static final int MAXP = 3 ; static final int MAXK = 600 ; static final int MAXPREV = 4 ; Â
static int [][][][]dp = new int [MAX][MAXP + 1 ][MAXK][MAXPREV + 1 ]; Â
// Visited array to keep track // of which columns were painted static boolean []vis = new boolean [MAX]; Â
// Recursive Function to compute the // number of ways to paint the K cells // of the 3 x N grid static int helper( int col, int prevCol,                   int painted, int prev,                   int N, int P, int K) {          // Condition to check if total     // cells painted are K     if (painted >= K)     {         int continuousCol = 0 ;         int maxContinuousCol = 0 ; Â
        // Check if any P continuous         // columns were left unpainted         for ( int i = 0 ; i < N; i++)         { Â
            if (vis[i] == false )                 continuousCol++;             else             {                 maxContinuousCol = Math.max(                                    maxContinuousCol,                                    continuousCol);                 continuousCol = 0 ;             }         } Â
        maxContinuousCol = Math.max(                            maxContinuousCol,                            continuousCol); Â
        // Condition to check if no P         // continuous columns were         // left unpainted         if (maxContinuousCol < P)             return 1 ; Â
        // return 0 if there are P         // continuous columns are         // left unpainted         return 0 ;     } Â
    // Condition to check if No     // further cells can be     // painted, so return 0     if (col >= N)         return 0 ; Â
    // If already calculated the value     // return the val instead     // of calculating again     if (dp[col][prevCol][painted][prev] != - 1 )         return dp[col][prevCol][painted][prev]; Â
    int res = 0 ; Â
    // Previous column was not painted     if (prev == 0 )     {                  // Column is painted so,         // make vis[col]=true         vis[col] = true ;         res += (helper(col + 1 , 0 ,                        painted + 1 ,                        1 , N, P, K)) % mod; Â
        res += (helper(col + 1 , 0 ,                        painted + 1 ,                        2 , N, P, K)) % mod; Â
        res += (helper(col + 1 , 0 ,                        painted + 1 ,                        3 , N, P, K)) % mod; Â
        // Condition to check if the number         // of cells to be painted is equal         // to or more than 2, then we can         // paint first and third row         if (painted + 2 <= K)         {             res += (helper(col + 1 , 0 ,                            painted + 2 ,                            4 , N, P, K)) % mod;         }         vis[col] = false ; Â
        // Condition to check if number of         // previous continuous columns left         // unpainted is less than P         if (prevCol + 1 < P)         {             res += (helper(col + 1 ,                            prevCol + 1 ,                            painted, 0 ,                            N, P, K)) % mod;         }     } Â
    // Condition to check if first row     // was painted in previous column     else if (prev == 1 )     {         vis[col] = true ;         res += (helper(col + 1 , 0 ,                        painted + 1 ,                        2 , N, P, K)) % mod;         res += (helper(col + 1 , 0 ,                        painted + 1 ,                        3 , N, P, K)) % mod;         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1 ,                            prevCol + 1 ,                            painted, 0 ,                            N, P, K)) % mod;         }     } Â
    // Condition to check if second row     // was painted in previous column     else if (prev == 2 )     {         vis[col] = true ;         res += (helper(col + 1 , 0 ,                        painted + 1 ,                        1 , N, P, K)) % mod;         res += (helper(col + 1 , 0 ,                        painted + 1 ,                        3 , N, P, K)) % mod; Â
        // Condition to check if the number         // of cells to be painted is equal to         // or more than 2, then we can         // paint first and third row         if (painted + 2 <= K)         {             res += (helper(col + 1 , 0 ,                            painted + 2 ,                            4 , N, P, K)) % mod;         }         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1 ,                            prevCol + 1 ,                            painted, 0 ,                            N, P, K)) % mod;         }     } Â
    // Condition to check if third row     // was painted in previous column     else if (prev == 3 )     {         vis[col] = true ;         res += (helper(col + 1 , 0 ,                        painted + 1 ,                        1 , N, P, K)) % mod;         res += (helper(col + 1 , 0 ,                        painted + 1 ,                        2 , N, P, K)) % mod;         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1 ,                            prevCol + 1 ,                            painted, 0 ,                            N, P, K)) % mod;         }     } Â
    // Condition to check if first and     // third row were painted     // in previous column     else     {         vis[col] = true ;         res += (helper(col + 1 , 0 ,                        painted + 1 ,                        2 , N, P, K)) % mod;         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1 ,                            prevCol + 1 ,                            painted, 0 ,                            N, P, K)) % mod;         }     } Â
    // Memoize the data and return     // the computed value     return dp[col][prevCol][painted][prev] = res % mod; } Â
// Function to find the number of // ways to paint 3 x N grid static int solve( int n, int p, int K) {          // Set all values     // of dp to -1;     for ( int i = 0 ; i < MAX; i++)         for ( int j = 0 ; j < MAXP + 1 ; j++)             for ( int k = 0 ; k < MAXK; k++)                 for ( int l = 0 ; l < MAXPREV + 1 ; l++)                     dp[i][j][k][l] = - 1 ; Â
    // Set all values of Visited     // array to false     Arrays.fill(vis, false ); Â
    return helper( 0 , 0 , 0 , 0 , n, p, K); } Â
// Driver Code public static void main(String[] args) { Â Â Â Â int N = 2 , K = 2 , P = 2 ; Â Â Â Â Â Â Â Â Â System.out.print(solve(N, P, K) + "\n" ); } } Â
// This code is contributed by Amit Katiyar |
Python3
# Python 3 implementation to find the # number of ways to paint K cells of # 3 x N grid such that No two adjacent # cells are painted Â
mod = 1e9 + 7 MAX = 301 MAXP = 3 MAXK = 600 MAXPREV = 4 Â
dp = [[[[ - 1 for x in range (MAXPREV + 1 )] for y in range (MAXK)] Â Â Â Â Â Â Â for z in range (MAXP + 1 )] for k in range ( MAX )] Â
# Visited array to keep track # of which columns were painted vis = [ False ] * MAX Â
# Recursive Function to compute the # number of ways to paint the K cells # of the 3 x N grid def helper(col, prevCol, Â Â Â Â Â Â Â Â Â Â Â painted, prev, Â Â Â Â Â Â Â Â Â Â Â N, P, K): Â
    # Condition to check if total     # cells painted are K     if (painted > = K):         continuousCol = 0         maxContinuousCol = 0 Â
        # Check if any P continuous         # columns were left unpainted         for i in range (N):             if (vis[i] = = False ):                 continuousCol + = 1             else :                 maxContinuousCol = max (maxContinuousCol,                                        continuousCol)                 continuousCol = 0 Â
        maxContinuousCol = max (             maxContinuousCol,             continuousCol) Â
        # Condition to check if no P         # continuous columns were         # left unpainted         if (maxContinuousCol < P):             return 1 Â
        # return 0 if there are P         # continuous columns are         # left unpainted         return 0 Â
    # Condition to check if No     # further cells can be     # painted, so return 0     if (col > = N):         return 0 Â
    # if already calculated the value     # return the val instead     # of calculating again     if (dp[col][prevCol][painted][prev] ! = - 1 ):         return dp[col][prevCol][painted][prev] Â
    res = 0 Â
    # Previous column was not painted     if (prev = = 0 ): Â
        # Column is painted so,         # make vis[col]=true         vis[col] = True         res + = ((helper(             col + 1 , 0 , painted + 1 ,             1 , N, P, K))             % mod) Â
        res + = ((helper(             col + 1 , 0 , painted + 1 ,             2 , N, P, K))             % mod) Â
        res + = ((helper(             col + 1 , 0 , painted + 1 ,             3 , N, P, K))             % mod) Â
        # Condition to check if the number         # of cells to be painted is equal         # to or more than 2, then we can         # paint first and third row         if (painted + 2 < = K):             res + = ((helper(                 col + 1 , 0 , painted + 2 ,                 4 , N, P, K))                 % mod) Â
        vis[col] = False Â
        # Condition to check if number of         # previous continuous columns left         # unpainted is less than P         if (prevCol + 1 < P):             res + = ((helper(                 col + 1 , prevCol + 1 ,                 painted, 0 , N, P, K))                 % mod) Â
    # Condition to check if first row     # was painted in previous column     elif (prev = = 1 ):         vis[col] = True         res + = ((helper(             col + 1 , 0 , painted + 1 ,             2 , N, P, K))             % mod)         res + = ((helper(             col + 1 , 0 , painted + 1 ,             3 , N, P, K))             % mod)         vis[col] = False         if (prevCol + 1 < P):             res + = ((helper(                 col + 1 , prevCol + 1 ,                 painted, 0 , N, P, K))                 % mod) Â
    # Condition to check if second row     # was painted in previous column     elif (prev = = 2 ):         vis[col] = True         res + = ((helper(             col + 1 , 0 , painted + 1 ,             1 , N, P, K))             % mod)         res + = ((helper(             col + 1 , 0 , painted + 1 ,             3 , N, P, K))             % mod) Â
        # Condition to check if the number         # of cells to be painted is equal to         # or more than 2, then we can         # paint first and third row         if (painted + 2 < = K):             res + = ((helper(                 col + 1 , 0 , painted + 2 ,                 4 , N, P, K))                 % mod) Â
        vis[col] = False         if (prevCol + 1 < P):             res + = ((helper(                 col + 1 , prevCol + 1 ,                 painted, 0 , N, P, K))                 % mod) Â
    # Condition to check if third row     # was painted in previous column     elif (prev = = 3 ):         vis[col] = True         res + = ((helper(             col + 1 , 0 , painted + 1 ,             1 , N, P, K))             % mod)         res + = ((helper(             col + 1 , 0 , painted + 1 ,             2 , N, P, K))             % mod)         vis[col] = False         if (prevCol + 1 < P):             res + = ((helper(                 col + 1 , prevCol + 1 ,                 painted, 0 , N, P, K))                 % mod) Â
    # Condition to check if first and     # third row were painted     # in previous column     else :         vis[col] = True         res + = ((helper(             col + 1 , 0 , painted + 1 ,             2 , N, P, K))             % mod)         vis[col] = False         if (prevCol + 1 < P):             res + = ((helper(                 col + 1 , prevCol + 1 ,                 painted, 0 , N, P, K))                 % mod) Â
    # Memoize the data and return the     # Computed value     dp[col][prevCol][painted][prev] = res % mod     return dp[col][prevCol][painted][prev] Â
# Function to find the number of # ways to paint 3 x N grid Â
Â
def solve(n, p, k): Â
    # Set all values     # of dp to -1;     global dp Â
    # Set all values of Visited     # array to false     global vis Â
    return helper( 0 , 0 , 0 , 0 , n, p, k) Â
# Driver Code if __name__ = = "__main__" : Â
    N = 2     K = 2     P = 2     print ( int (solve(N, P, K))) Â
    # This code is contributed by ukasp. |
C#
// C# implementation to find the // number of ways to paint K cells of // 3 x N grid such that No two adjacent // cells are painted using System; class GFG{   static int mod = ( int )(1e9 + 7); static readonly int MAX = 301; static readonly int MAXP = 3; static readonly int MAXK = 600; static readonly int MAXPREV = 4;   static int [,,,]dp = new int [MAX, MAXP + 1,                              MAXK, MAXPREV + 1];   // Visited array to keep track // of which columns were painted static bool []vis = new bool [MAX];   // Recursive Function to compute the // number of ways to paint the K cells // of the 3 x N grid static int helper( int col, int prevCol,                 int painted, int prev,                 int N, int P, int K) {           // Condition to check if total     // cells painted are K     if (painted >= K)     {         int continuousCol = 0;         int maxContinuousCol = 0;           // Check if any P continuous         // columns were left unpainted         for ( int i = 0; i < N; i++)         {               if (vis[i] == false )                 continuousCol++;             else             {                 maxContinuousCol = Math.Max(                                    maxContinuousCol,                                    continuousCol);                 continuousCol = 0;             }         }           maxContinuousCol = Math.Max(                            maxContinuousCol,                            continuousCol);           // Condition to check if no P         // continuous columns were         // left unpainted         if (maxContinuousCol < P)             return 1;           // return 0 if there are P         // continuous columns are         // left unpainted         return 0;     }       // Condition to check if No     // further cells can be     // painted, so return 0     if (col >= N)         return 0;       // If already calculated the value     // return the val instead     // of calculating again     if (dp[col, prevCol, painted, prev] != -1)         return dp[col, prevCol, painted, prev];       int res = 0;       // Previous column was not painted     if (prev == 0)     {                   // Column is painted so,         // make vis[col]=true         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        1, N, P, K)) % mod;           res += (helper(col + 1, 0,                        painted + 1,                        2, N, P, K)) % mod;           res += (helper(col + 1, 0,                        painted + 1,                        3, N, P, K)) % mod;           // Condition to check if the number         // of cells to be painted is equal         // to or more than 2, then we can         // paint first and third row         if (painted + 2 <= K)         {             res += (helper(col + 1, 0,                            painted + 2,                            4, N, P, K)) % mod;         }         vis[col] = false ;           // Condition to check if number of         // previous continuous columns left         // unpainted is less than P         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Condition to check if first row     // was painted in previous column     else if (prev == 1)     {         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        2, N, P, K)) % mod;         res += (helper(col + 1, 0,                        painted + 1,                        3, N, P, K)) % mod;         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Condition to check if second row     // was painted in previous column     else if (prev == 2)     {         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        1, N, P, K)) % mod;         res += (helper(col + 1, 0,                        painted + 1,                        3, N, P, K)) % mod;           // Condition to check if the number         // of cells to be painted is equal to         // or more than 2, then we can         // paint first and third row         if (painted + 2 <= K)         {             res += (helper(col + 1, 0,                            painted + 2,                            4, N, P, K)) % mod;         }         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Condition to check if third row     // was painted in previous column     else if (prev == 3)     {         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        1, N, P, K)) % mod;         res += (helper(col + 1, 0,                        painted + 1,                        2, N, P, K)) % mod;         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Condition to check if first and     // third row were painted     // in previous column     else     {         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        2, N, P, K)) % mod;         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Memoize the data and return     // the computed value     return dp[col, prevCol, painted, prev] = res % mod; }   // Function to find the number of // ways to paint 3 x N grid static int solve( int n, int p, int K) {           // Set all values     // of dp to -1;     for ( int i = 0; i < MAX; i++)         for ( int j = 0; j < MAXP + 1; j++)             for ( int k = 0; k < MAXK; k++)                 for ( int l = 0; l < MAXPREV + 1; l++)                     dp[i, j, k, l] = -1;       // Set all values of Visited     // array to false     for ( int i = 0; i < vis.Length; i++)         vis[i] = false ;       return helper(0, 0, 0, 0, n, p, K); }   // Driver Code public static void Main(String[] args) {     int N = 2, K = 2, P = 2;           Console.Write(solve(N, P, K) + "\n" ); } }   // This code is contributed by Rohit_ranjan |
Javascript
<script> // Javascript implementation to find the // number of ways to paint K cells of // 3 x N grid such that No two adjacent // cells are painted Â
let mod = (1e9 + 7); let MAX = 301; let MAXP = 3; let MAXK = 600; let MAXPREV = 4; Â
let dp = new Array(MAX); for (let i = 0; i < MAX; i++) { Â Â Â Â dp[i] = new Array(MAXP + 1); Â Â Â Â for (let j = 0; j < (MAXP + 1); j++) Â Â Â Â { Â Â Â Â Â Â Â Â dp[i][j] = new Array(MAXK); Â Â Â Â Â Â Â Â for (let k = 0; k < MAXK; k++) Â Â Â Â Â Â Â Â { Â Â Â Â Â Â Â Â Â Â Â Â dp[i][j][k] = new Array(MAXPREV + 1); Â Â Â Â Â Â Â Â Â Â Â Â for (let l = 0; l < (MAXPREV + 1); l++) Â Â Â Â Â Â Â Â Â Â Â Â { Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â dp[i][j][k][l] = -1; Â Â Â Â Â Â Â Â Â Â Â Â } Â Â Â Â Â Â Â Â } Â Â Â Â } } Â
// Visited array to keep track // of which columns were painted let vis = new Array(MAX); for (let i = 0; i < MAX; i++) { Â Â Â Â vis[i] = false ; } Â
// Recursive Function to compute the // number of ways to paint the K cells // of the 3 x N grid function helper(col, prevCol, painted, prev, N, P, K) { Â
    // Condition to check if total     // cells painted are K     if (painted >= K)     {         let continuousCol = 0;         let maxContinuousCol = 0;           // Check if any P continuous         // columns were left unpainted         for (let i = 0; i < N; i++)         {               if (vis[i] == false )                 continuousCol++;             else             {                 maxContinuousCol = Math.max(                                    maxContinuousCol,                                    continuousCol);                 continuousCol = 0;             }         }           maxContinuousCol = Math.max(                            maxContinuousCol,                            continuousCol);           // Condition to check if no P         // continuous columns were         // left unpainted         if (maxContinuousCol < P)             return 1;           // return 0 if there are P         // continuous columns are         // left unpainted         return 0;     }       // Condition to check if No     // further cells can be     // painted, so return 0     if (col >= N)         return 0;       // If already calculated the value     // return the val instead     // of calculating again     if (dp[col][prevCol][painted][prev] != -1)         return dp[col][prevCol][painted][prev];       let res = 0;       // Previous column was not painted     if (prev == 0)     {                   // Column is painted so,         // make vis[col]=true         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        1, N, P, K)) % mod;           res += (helper(col + 1, 0,                        painted + 1,                        2, N, P, K)) % mod;           res += (helper(col + 1, 0,                        painted + 1,                        3, N, P, K)) % mod;           // Condition to check if the number         // of cells to be painted is equal         // to or more than 2, then we can         // paint first and third row         if (painted + 2 <= K)         {             res += (helper(col + 1, 0,                            painted + 2,                            4, N, P, K)) % mod;         }         vis[col] = false ;           // Condition to check if number of         // previous continuous columns left         // unpainted is less than P         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Condition to check if first row     // was painted in previous column     else if (prev == 1)     {         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        2, N, P, K)) % mod;         res += (helper(col + 1, 0,                        painted + 1,                        3, N, P, K)) % mod;         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Condition to check if second row     // was painted in previous column     else if (prev == 2)     {         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        1, N, P, K)) % mod;         res += (helper(col + 1, 0,                        painted + 1,                        3, N, P, K)) % mod;           // Condition to check if the number         // of cells to be painted is equal to         // or more than 2, then we can         // paint first and third row         if (painted + 2 <= K)         {             res += (helper(col + 1, 0,                            painted + 2,                            4, N, P, K)) % mod;         }         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Condition to check if third row     // was painted in previous column     else if (prev == 3)     {         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        1, N, P, K)) % mod;         res += (helper(col + 1, 0,                        painted + 1,                        2, N, P, K)) % mod;         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Condition to check if first and     // third row were painted     // in previous column     else     {         vis[col] = true ;         res += (helper(col + 1, 0,                        painted + 1,                        2, N, P, K)) % mod;         vis[col] = false ;         if (prevCol + 1 < P)         {             res += (helper(col + 1,                            prevCol + 1,                            painted, 0,                            N, P, K)) % mod;         }     }       // Memoize the data and return     // the computed value     return dp[col][prevCol][painted][prev] = res % mod; } Â
// Function to find the number of // ways to paint 3 x N grid function solve(n,p,k) { Â Â Â Â return helper(0, 0, 0, 0, n, p, K); } Â
// Driver Code let N = 2, K = 2, P = 2; document.write(solve(N, P, K) + "<br>" ); Â
// This code is contributed by avanitrachhadiya2155 </script> |
8
Â
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!