Python | SymPy Permutation.commutes_with() method

Permutation.commutes_with() : commutes_with() is a sympy Python library function that checks whether the two permutations are commuting. Suppose ‘a’ and ‘b’ are part of ‘C’, then the commutator of a and b is the ‘C’ identity if a and b commute, i.e. ab == ba.
Syntax : sympy.combinatorics.permutations.Permutation.commutes_with() Return : checks whether the two permutations are commuting
Code #1 : commutes_with() Example
Python3
# Python code explaining # SymPy.Permutation.commutes_with() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from sympy.combinatorics.permutations.Permutation.commutes_with() method # creating Permutation a = Permutation([2, 0, 3, 1, 5, 4]) b = Permutation([3, 1, 2, 5, 4, 0]) print ("Permutation a - commutes_with form : ", a.commutes_with(b)) print ("Permutation b - commutes_with form : ", b.commutes_with(a)) |
Output :
Permutation a – commutes_with form : False Permutation b – commutes_with form : False
Code #2 : commutes_with() Example – Self Commutator
Python3
# Python code explaining # SymPy.Permutation.commutes_with() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from sympy.combinatorics.permutations.Permutation.commutes_with() method # creating Permutation a = Permutation([[2, 4, 0], [3, 1, 2], [1, 5, 6]]) # SELF COMMUTATING print ("Permutation a - commutes_with form : ", a.commutes_with(a)) |
Output :
Permutation a – commutes_with form : True



