K-th Lexicographically smallest binary string with A 0s and B 1s

Given three positive integers A, B, and K, the task is to find the Kth lexicographically smallest binary string that contains exactly A number of 0s and B number of 1s.
Example:
Input: A = 2, B = 2, K = 4
Output: 1001
Explanation: The lexicographic order of the strings is 0011, 0101, 0110, 1001.Input: A = 3, B = 3, K = 7
Output: 010110
Â
Approach: The above problem can be solved by using Dynamic Programming. Follow the below steps to solve this problem:
- Initialize a 2D array dp[][] such that dp[i][j] will denote the total number of binary strings with i number of 0s and j number of 1s.
- All the dp table values are initially filled with zeroes except dp[0][0] = 1 which denotes an empty string.
- Now, dp[i][j] can be calculated as the sum of the total number of strings ending with 0(using the dp state as dp[i – 1][j]) and the string ending with 1(using the dp state as dp[i][j – 1]). So, the current dp state is calculated as dp[i][j] = dp[i – 1][j] + dp[i][j – 1].
- After filling this dp table, a recursive function can be used to calculate the Kth lexicographically smallest binary string.
- So, define a function KthString having parameters A, B, K, and dp.
- Now, in each call of this recursive function:
- If the value of dp[A][B] is at least K then only ‘0’ can be present at this position in the Kth lexicographically smallest binary string and then recursively call function for the state (A – 1, B).
- Else ‘1’ is present here and recursively call function for the state (A, B – 1).
- Print the answer according to the above observation.
Below is the implementation of the above approach:
C++
// C++ program for the above approachÂ
#include <bits/stdc++.h>using namespace std;Â
// Recursive function to find the Kth// smallest binary stringstring KthString(int A, int B, long long K,                 vector<vector<int> >& dp){    // Base Case    if (A == 0) {Â
        // Return string of all 1's        // of length B        return string(B, '1');    }    if (B == 0) {Â
        // Return string of all 0's        // of length A        return string(A, '0');    }Â
    if (K <= dp[A - 1][B]) {        return "0" + KthString(                         A - 1, B, K, dp);    }Â
    else {        return "1"               + KthString(                     A, B - 1,                     K - dp[A - 1][B], dp);    }}Â
// Function to find the Kth lexicographically// smallest binary string with exactly// A zeroes and B onesint KthStringUtil(int A, int B, int K){    // Stores the recurring states    vector<vector<int> > dp(        A + 1, vector<int>(B + 1));Â
    // Calculate the dp values iteratively    dp[0][0] = 1;    for (int i = 0; i <= A; ++i) {        for (int j = 0; j <= B; ++j) {Â
            if (i > 0) {Â
                // The last character was '0'                dp[i][j] += dp[i - 1][j];            }            if (j > 0) {Â
                // The last character was '1'                dp[i][j] += dp[i][j - 1];            }        }    }Â
    // Print the binary string obtained    cout << KthString(A, B, K, dp);Â
    return 0;}Â
// Driver Codeint main(){Â Â Â Â int A = 3, B = 3, K = 7;Â Â Â Â KthStringUtil(A, B, K);Â
    return 0;} |
Java
// Java program for the above approachimport java.io.*;Â
class GFG {Â
    // Recursive function to find the Kth    // smallest binary string    static String KthString(int A, int B, long K, int[][] dp)    {               // Base Case        if (A == 0) {Â
            // Return string of all 1's            // of length B            String ans = "";            for (int i = 0; i < B; i++) {                ans += '1';            }            return ans;        }        if (B == 0) {Â
            // Return string of all 0's            // of length A            String ans = "";            for (int i = 0; i < A; i++) {                ans += '0';            }            return ans;        }Â
        if (K <= dp[A - 1][B]) {            return "0" + KthString(A - 1, B, K, dp);        }Â
        else {            return "1"                + KthString(A, B - 1, K - dp[A - 1][B], dp);        }    }Â
    // Function to find the Kth lexicographically    // smallest binary string with exactly    // A zeroes and B ones    static int KthStringUtil(int A, int B, int K)    {        // Stores the recurring states        int[][] dp = new int[A + 1][B + 1];Â
        // Calculate the dp values iteratively        dp[0][0] = 1;        for (int i = 0; i <= A; ++i) {            for (int j = 0; j <= B; ++j) {Â
                if (i > 0) {Â
                    // The last character was '0'                    dp[i][j] += dp[i - 1][j];                }                if (j > 0) {Â
                    // The last character was '1'                    dp[i][j] += dp[i][j - 1];                }            }        }Â
        // Print the binary string obtained        System.out.println(KthString(A, B, K, dp));Â
        return 0;    }Â
    // Driver Code    public static void main(String[] args)    {        int A = 3, B = 3, K = 7;        KthStringUtil(A, B, K);    }}Â
// This code is contributed by Dharanendra L V. |
Python3
# Python Program to implement# the above approachÂ
# Recursive function to find the Kth# smallest binary stringdef KthString(A, B, K, dp):       # Base Case    if (A == 0):Â
        # Return string of all 1's        # of length B        str = ""        for i in range(B):            str += '1'                 return str         if (B == 0):Â
        # Return string of all 0's        # of length A        str = ""        for i in range(A):            str += '0'        return strÂ
    if (K <= dp[A - 1][B]):        return "0" + KthString( A - 1, B, K, dp)Â
    else:        return "1" + KthString( A, B - 1, K - dp[A - 1][B], dp)     Â
# Function to find the Kth lexicographically# smallest binary string with exactly# A zeroes and B onesdef KthStringUtil(A, B, K):       # Stores the recurring states    dp = [0] * (A + 1)Â
    for i in range(len(dp)):        dp[i] = [0] * (B + 1)     Â
    # Calculate the dp values iteratively    dp[0][0] = 1    for i in range(A + 1):        for j in range(B + 1):Â
            if (i > 0):Â
                # The last character was '0'                dp[i][j] += dp[i - 1][j]                         if (j > 0):Â
                # The last character was '1'                dp[i][j] += dp[i][j - 1]         Â
    # Print the binary string obtained    print(KthString(A, B, K, dp))Â
# Driver CodeA = 3B = 3K = 7KthStringUtil(A, B, K)Â
# This code is contributed by gfgking. |
C#
// C# program for the above approachusing System;class GFG {Â
    // Recursive function to find the Kth    // smallest binary string    static string KthString(int A, int B, long K,                            int[, ] dp)    {Â
        // Base Case        if (A == 0) {Â
            // Return string of all 1's            // of length B            string ans = "";            for (int i = 0; i < B; i++) {                ans += '1';            }            return ans;        }        if (B == 0) {Â
            // Return string of all 0's            // of length A            string ans = "";            for (int i = 0; i < A; i++) {                ans += '0';            }            return ans;        }Â
        if (K <= dp[A - 1, B]) {            return "0" + KthString(A - 1, B, K, dp);        }Â
        else {            return "1"                + KthString(A, B - 1, K - dp[A - 1, B], dp);        }    }Â
    // Function to find the Kth lexicographically    // smallest binary string with exactly    // A zeroes and B ones    static int KthStringUtil(int A, int B, int K)    {        // Stores the recurring states        int[, ] dp = new int[A + 1, B + 1];Â
        // Calculate the dp values iteratively        dp[0, 0] = 1;        for (int i = 0; i <= A; ++i) {            for (int j = 0; j <= B; ++j) {Â
                if (i > 0) {Â
                    // The last character was '0'                    dp[i, j] += dp[i - 1, j];                }                if (j > 0) {Â
                    // The last character was '1'                    dp[i, j] += dp[i, j - 1];                }            }        }Â
        // Print the binary string obtained        Console.WriteLine(KthString(A, B, K, dp));Â
        return 0;    }Â
    // Driver Code    public static void Main(string[] args)    {        int A = 3, B = 3, K = 7;        KthStringUtil(A, B, K);    }}Â
// This code is contributed by ukasp. |
Javascript
<script>        // JavaScript Program to implement        // the above approachÂ
        // Recursive function to find the Kth        // smallest binary string        function KthString(A, B, K,            dp) {            // Base Case            if (A == 0) {Â
                // Return string of all 1's                // of length B                let str = "";                for (let i = 0; i < B; i++) {                    str += '1';                }                return str;            }            if (B == 0) {Â
                // Return string of all 0's                // of length A                let str = "";                for (let i = 0; i < A; i++) {                    str += '0';                }                return str;Â
            }Â
            if (K <= dp[A - 1][B]) {                return "0" + KthString(                    A - 1, B, K, dp);            }Â
            else {                return "1"                    + KthString(                        A, B - 1,                        K - dp[A - 1][B], dp);            }        }Â
        // Function to find the Kth lexicographically        // smallest binary string with exactly        // A zeroes and B ones        function KthStringUtil(A, B, K) {            // Stores the recurring states            let dp = new Array(A + 1);Â
            for (let i = 0; i < dp.length; i++) {                dp[i] = new Array(B + 1).fill(0);            }Â
            // Calculate the dp values iteratively            dp[0][0] = 1;            for (let i = 0; i <= A; ++i) {                for (let j = 0; j <= B; ++j) {Â
                    if (i > 0) {Â
                        // The last character was '0'                        dp[i][j] += dp[i - 1][j];                    }                    if (j > 0) {Â
                        // The last character was '1'                        dp[i][j] += dp[i][j - 1];                    }                }            }Â
            // Print the binary string obtained            document.write(KthString(A, B, K, dp));Â
            return 0;        }Â
        // Driver Code        let A = 3, B = 3, K = 7;        KthStringUtil(A, B, K);Â
     // This code is contributed by Potta LokeshÂ
    </script> |
Output:Â
010110
Â
Time Complexity: O(A*B)
Auxiliary Space: O(A*B)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



