Find safe cells in a matrix

Given a matrix mat[][] containing the characters Z, P and * where Z is a zombie, P is a plant and * is a bare land. Given that a zombie can attack a plant if the plant is adjacent to the zombie (total, 8 adjacent cells are possible). The task is to print the number of plants that are safe from the zombies.
Examples:
Input:
mat[] = { "**P*",
"*Z**",
"*Z**",
"***P" }
Output: 1
Input:
mat[] = { "**P*P",
"*Z**",
"*P**",
"***P" }
Output: 2
Approach: Traverse the matrix element by element, if the current element is a plant i.e., mat[i][j] = ‘P’ then check if the plant is surrounded by any zombie (in all the 8 adjacent cells). If the plant is safe, then update count = count + 1. Print the count in the end.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <iostream>using namespace std;// Function that returns true if mat[i][j] is a zombiebool isZombie(int i, int j, int r, int c, string mat[]){ if (i < 0 || j < 0 || i >= r || j >= c || mat[i][j] != 'Z') return false; return true;}// Function to return the count of plants// that survived from the zombies attackint Plant_Vs_Zombies(string mat[], int row, int col){ int i, j, count = 0; for (i = 0; i < row; i++) { for (j = 0; j < col; j++) { // If current cell is a plant if (mat[i][j] == 'P') { // If current plant is safe from zombies if (!isZombie(i - 1, j - 1, row, col, mat) && !isZombie(i - 1, j, row, col, mat) && !isZombie(i - 1, j + 1, row, col, mat) && !isZombie(i, j - 1, row, col, mat) && !isZombie(i, j, row, col, mat) && !isZombie(i, j + 1, row, col, mat) && !isZombie(i + 1, j - 1, row, col, mat) && !isZombie(i + 1, j, row, col, mat) && !isZombie(i + 1, j + 1, row, col, mat)) { count++; } } } } return count;}// Driver Codeint main(){ // Input matrix string mat[] = { "**P*", "*Z**", "*Z**", "***P" }; // Rows and columns of the matrix int row = sizeof(mat) / sizeof(mat[0]); int col = mat[0].length(); // Total plants survived cout << Plant_Vs_Zombies(mat, row, col);} |
Java
// Java implementation of the approach. class GfG{ // Function that returns true if // mat[i][j] is a zombie static boolean isZombie(int i, int j, int r, int c, String mat[]) { if (i < 0 || j < 0 || i >= r || j >= c || mat[i].charAt(j) != 'Z') return false; return true; } // Function to return the count of plants // that survived from the zombies attack static int Plant_Vs_Zombies(String mat[], int row, int col) { int i, j, count = 0; for (i = 0; i < row; i++) { for (j = 0; j < col; j++) { // If current cell is a plant if (mat[i].charAt(j) == 'P') { // If current plant is safe from zombies if (!isZombie(i - 1, j - 1, row, col, mat) && !isZombie(i - 1, j, row, col, mat) && !isZombie(i - 1, j + 1, row, col, mat) && !isZombie(i, j - 1, row, col, mat) && !isZombie(i, j, row, col, mat) && !isZombie(i, j + 1, row, col, mat) && !isZombie(i + 1, j - 1, row, col, mat) && !isZombie(i + 1, j, row, col, mat) && !isZombie(i + 1, j + 1, row, col, mat)) { count++; } } } } return count; } // Driver code public static void main(String []args) { // Input matrix String[] mat = { "**P*", "*Z**", "*Z**", "***P" }; // Rows and columns of the matrix int row = mat.length; int col = mat[0].length(); // Total plants survived System.out.println(Plant_Vs_Zombies(mat, row, col)); }}// This code is contributed by Rituraj Jain |
Python3
# Python3 implementation of the approach. # Function that returns true if # mat[i][j] is a zombie def isZombie(i, j, r, c, mat): if (i < 0 or j < 0 or i >= r or j >= c or mat[i][j] != 'Z'): return True; return False; # Function to return the count of plants # that survived from the zombies attack def Plant_Vs_Zombies(mat, row, col): count = 0; for i in range(row): for j in range(col): # If current cell is a plant if (mat[i][j] == 'P'): # If current plant is safe from zombies if (isZombie(i - 1, j - 1, row, col, mat) and isZombie(i - 1, j, row, col, mat) and isZombie(i - 1, j + 1, row, col, mat) and isZombie(i, j - 1, row, col, mat) and isZombie(i, j, row, col, mat) and isZombie(i, j + 1, row, col, mat) and isZombie(i + 1, j - 1, row, col, mat) and isZombie(i + 1, j, row, col, mat) and isZombie(i + 1, j + 1, row, col, mat)): count += 1; return count; # Driver code# Input matrix mat = ["**P*", "*Z**", "*Z**", "***P"]; # Rows and columns of the matrix row = len(mat); col = len(mat[0]); # Total plants survived print(Plant_Vs_Zombies(mat, row, col));# This code is contributed by mits |
C#
// C# implementation of the approach.using System;class GfG{ // Function that returns true if // mat[i][j] is a zombie static bool isZombie(int i, int j, int r, int c, String []mat) { if (i < 0 || j < 0 || i >= r || j >= c || mat[i][j] != 'Z') return false; return true; } // Function to return the count of plants // that survived from the zombies attack static int Plant_Vs_Zombies(String []mat, int row, int col) { int i, j, count = 0; for (i = 0; i < row; i++) { for (j = 0; j < col; j++) { // If current cell is a plant if (mat[i][j] == 'P') { // If current plant is safe from zombies if (!isZombie(i - 1, j - 1, row, col, mat) && !isZombie(i - 1, j, row, col, mat) && !isZombie(i - 1, j + 1, row, col, mat) && !isZombie(i, j - 1, row, col, mat) && !isZombie(i, j, row, col, mat) && !isZombie(i, j + 1, row, col, mat) && !isZombie(i + 1, j - 1, row, col, mat) && !isZombie(i + 1, j, row, col, mat) && !isZombie(i + 1, j + 1, row, col, mat)) { count++; } } } } return count; } // Driver code public static void Main(String []args) { // Input matrix String[] mat = { "**P*", "*Z**", "*Z**", "***P" }; // Rows and columns of the matrix int row = mat.Length; int col = mat[0].Length; // Total plants survived Console.WriteLine(Plant_Vs_Zombies(mat, row, col)); }}// This code contributed by Rajput-Ji |
PHP
<?php// PHP implementation of the approach. // Function that returns true if // mat[i][j] is a zombie function isZombie($i, $j, $r, $c, $mat) { if ($i < 0 || $j < 0 || $i >= $r || $j >= $c || $mat[$i][$j] != 'Z') return false; return true; } // Function to return the count of plants // that survived from the zombies attack function Plant_Vs_Zombies($mat, $row, $col) { $i; $j; $count = 0; for ($i = 0; $i < $row; $i++) { for ($j = 0; $j < $col; $j++) { // If current cell is a plant if ($mat[$i][$j] == 'P') { // If current plant is safe from zombies if (!isZombie($i - 1, $j - 1, $row, $col, $mat) && !isZombie($i - 1, $j, $row, $col, $mat) && !isZombie($i - 1, $j + 1, $row, $col, $mat) && !isZombie($i, $j - 1, $row, $col, $mat) && !isZombie($i, $j, $row, $col, $mat) && !isZombie($i, $j + 1, $row, $col, $mat) && !isZombie($i + 1, $j - 1, $row, $col, $mat) && !isZombie($i + 1, $j, $row, $col, $mat) && !isZombie($i + 1, $j + 1, $row, $col, $mat)) { $count++; } } } } return $count; } // Driver code// Input matrix $mat = array( "**P*", "*Z**", "*Z**", "***P" ); // Rows and columns of the matrix $row = sizeof($mat); $col = strlen($mat[0]); // Total plants survived echo(Plant_Vs_Zombies($mat, $row, $col));// This code is contributed by Code_Mech.?> |
Javascript
<script>// Javascript implementation of the approach.// Function that returns true if // mat[i][j] is a zombie function isZombie(i, j, r, c, mat) { if (i < 0 || j < 0 || i >= r || j >= c || mat[i][j] != 'Z') return false; return true; } // Function to return the count of plants // that survived from the zombies attack function Plant_Vs_Zombies(mat, row, col) { let i, j, count = 0; for(i = 0; i < row; i++) { for(j = 0; j < col; j++) { // If current cell is a plant if (mat[i][j] == 'P') { // If current plant is safe from zombies if (!isZombie(i - 1, j - 1, row, col, mat) && !isZombie(i - 1, j, row, col, mat) && !isZombie(i - 1, j + 1, row, col, mat) && !isZombie(i, j - 1, row, col, mat) && !isZombie(i, j, row, col, mat) && !isZombie(i, j + 1, row, col, mat) && !isZombie(i + 1, j - 1, row, col, mat) && !isZombie(i + 1, j, row, col, mat) && !isZombie(i + 1, j + 1, row, col, mat)) { count++; } } } } return count; } // Driver code// Input matrix let mat = [ "**P*", "*Z**", "*Z**", "***P" ]; // Rows and columns of the matrix let row = mat.length; let col = mat[0].length; // Total plants survived document.write(Plant_Vs_Zombies(mat, row, col));// This code is contributed by mukesh07</script> |
Output
1
Complexity Analysis:
- Time Complexity: O(N×N)
- Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



