Find (1^n + 2^n + 3^n + 4^n) mod 5 | Set 2

Given a very large number N. The task is to find (1n + 2n + 3n + 4n) mod 5.
Examples:
Input: N = 4
Output: 4
(1 + 16 + 81 + 256) % 5 = 354 % 5 = 4
Input: N = 7823462937826332873467731
Output: 0
Approach: (1n + 2n + 3n + 4n) mod 5 = (1n mod ?(5) + 2n mod ?(5) + 3n mod ?(5) + 4n mod ?(5)) mod 5.
This formula is correct because 5 is a prime number and it is coprime with 1, 2, 3, 4.
Know about ?(n) and modulo of large number
?(5) = 4, hence (1n + 2n + 3n + 4n) mod 5 = (1n mod 4 + 2n mod 4 + 3n mod 4 + 4n mod 4) mod 5
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return A mod Bint A_mod_B(string N, int a){ // length of the string int len = N.size(); // to store required answer int ans = 0; for (int i = 0; i < len; i++) ans = (ans * 10 + (int)N[i] - '0') % a; return ans % a;}// Function to return (1^n + 2^n + 3^n + 4^n) % 5int findMod(string N){ // ?(5) = 4 int mod = A_mod_B(N, 4); int ans = (1 + pow(2, mod) + pow(3, mod) + pow(4, mod)); return (ans % 5);}// Driver codeint main(){ string N = "4"; cout << findMod(N); return 0;} |
Java
// Java implementation of the approach class GFG{ // Function to return A mod B static int A_mod_B(String N, int a) { // length of the string int len = N.length(); // to store required answer int ans = 0; for (int i = 0; i < len; i++) ans = (ans * 10 + (int)N.charAt(i) - '0') % a; return ans % a; } // Function to return (1^n + 2^n + 3^n + 4^n) % 5 static int findMod(String N) { // ?(5) = 4 int mod = A_mod_B(N, 4); int ans = (1 + (int)Math.pow(2, mod) + (int)Math.pow(3, mod) + (int)Math.pow(4, mod)); return (ans % 5); } // Driver code public static void main(String args[]) { String N = "4"; System.out.println(findMod(N)); }} // This code is contributed by Arnab Kundu |
Python3
# Python3 implementation of the approach# Function to return A mod Bdef A_mod_B(N, a): # length of the string Len = len(N) # to store required answer ans = 0 for i in range(Len): ans = (ans * 10 + int(N[i])) % a return ans % a# Function to return (1^n + 2^n + 3^n + 4^n) % 5def findMod(N): # ?(5) = 4 mod = A_mod_B(N, 4) ans = (1 + pow(2, mod) + pow(3, mod) + pow(4, mod)) return ans % 5# Driver codeN = "4"print(findMod(N))# This code is contributed by mohit kumar |
C#
// C# implementation of the approach using System;class GFG{ // Function to return A mod B static int A_mod_B(string N, int a) { // length of the string int len = N.Length; // to store required answer int ans = 0; for (int i = 0; i < len; i++) ans = (ans * 10 + (int)N[i] - '0') % a; return ans % a; } // Function to return (1^n + 2^n + 3^n + 4^n) % 5 static int findMod(string N) { // ?(5) = 4 int mod = A_mod_B(N, 4); int ans = (1 + (int)Math.Pow(2, mod) + (int)Math.Pow(3, mod) + (int)Math.Pow(4, mod)); return (ans % 5); } // Driver code public static void Main() { string N = "4"; Console.WriteLine(findMod(N)); }} // This code is contributed by Code_Mech. |
PHP
<?php// PHP implementation of the approach// Function to return A mod Bfunction A_mod_B($N, $a){ // length of the string $len = strlen($N); // to store required answer $ans = 0; for ($i = 0; $i < $len; $i++) $ans = ($ans * 10 + (int)$N[$i] - '0') % $a; return $ans % $a;}// Function to return // (1^n + 2^n + 3^n + 4^n) % 5function findMod($N){ // ?(5) = 4 $mod = A_mod_B($N, 4); $ans = (1 + pow(2, $mod) + pow(3, $mod) + pow(4, $mod)); return ($ans % 5);}// Driver code$N = "4";echo findMod($N);// This code is contributed // by Akanksha Rai?> |
Javascript
<script>// Javascript implementation of the approach // Function to return A mod B function A_mod_B(N, a) { // length of the string var len = N.length; // to store required answer var ans = 0; for (var i = 0; i < len; i++) ans = (ans * 10 + parseInt(N.charAt(i) - '0')) % a; return ans % a; } // Function to return (1^n + 2^n + 3^n + 4^n) % 5 function findMod(N) { // ?(5) = 4 var mod = A_mod_B(N, 4); var ans = (1 + parseInt(Math.pow(2, mod) + Math.pow(3, mod) + Math.pow(4, mod))); return (ans % 5); } // Driver Codevar N = "4"; // Function calldocument.write(findMod(N)); // This code is contributed by Kirti</script> |
Output:
4
Time Complexity: O(|N|), where |N| is the length of the string.
Auxiliary Space: O(1), since no extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



