Burst Balloon to maximize coins

We have been given N balloons, each with a number of coins associated with it. On bursting a balloon i, the number of coins gained is equal to A[i-1]*A[i]*A[i+1]. Also, balloons i-1 and i+1 now become adjacent. Find the maximum possible profit earned after bursting all the balloons. Assume an extra 1 at each boundary.
Examples:
Input : 5, 10
Output : 60
Explanation - First Burst 5, Coins = 1*5*10
Then burst 10, Coins+= 1*10*1
Total = 60
Input : 1, 2, 3, 4, 5
Output : 110
A recursive solution is discussed here. We can solve this problem using dynamic programming.
First, consider a sub-array from indices Left to Right(inclusive).
If we assume the balloon at index Last to be the last balloon to be burst in this sub-array, we would say the coined gained to be-A[left-1]*A[last]*A[right+1].
Also, the total Coin Gained would be this value, plus dp[left][last – 1] + dp[last + 1][right], where dp[i][j] means maximum coin gained for sub-array with indices i, j.
Therefore, for each value of Left and Right, we need find and choose a value of Last with maximum coin gained, and update the dp array.
Our Answer is the value at dp[1][N].
C++
// C++ program burst balloon problem#include <bits/stdc++.h>#include <iostream>using namespace std;int getMax(int A[], int N){ // Add Bordering Balloons int B[N + 2]; B[0] = 1; B[N + 1] = 1; for (int i = 1; i <= N; i++) B[i] = A[i - 1]; // Declare DP Array int dp[N + 2][N + 2]; memset(dp, 0, sizeof(dp)); for (int length = 1; length < N + 1; length++) { for (int left = 1; left < N - length + 2; left++) { int right = left + length - 1; // For a sub-array from indices left, right // This innermost loop finds the last balloon burst for (int last = left; last < right + 1; last++) { dp[left][right] = max(dp[left][right], dp[left][last - 1] + B[left - 1] * B[last] * B[right + 1] + dp[last + 1][right]); } } } return dp[1][N];}// Driver code int main(){ int A[] = { 1, 2, 3, 4, 5 }; // Size of the array int N = sizeof(A) / sizeof(A[0]); // Calling function cout << getMax(A, N) << endl;}// This code is contributed by ashutosh450 |
Java
// Java program to illustrate// Burst balloon problemimport java.util.Arrays;class GFG{public static int getMax(int[] A, int N) { // Add Bordering Balloons int[] B = new int[N + 2]; B[0] = B[N + 1] = 1; for(int i = 1; i <= N; i++) B[i] = A[i - 1]; // Declaring DP array int[][] dp = new int[N + 2][N + 2]; for(int length = 1; length < N + 1; length++) { for(int left = 1; left < N - length + 2; left++) { int right = left + length -1; // For a sub-array from indices // left, right. This innermost // loop finds the last balloon burst for(int last = left; last < right + 1; last++) { dp[left][right] = Math.max( dp[left][right], dp[left][last - 1] + B[left - 1] * B[last] * B[right + 1] + dp[last + 1][right]); } } } return dp[1][N];}// Driver codepublic static void main(String args[]){ int[] A = { 1, 2, 3, 4, 5 }; // Size of the array int N = A.length; // Calling function System.out.println(getMax(A, N)); }}// This code is contributed by dadi madhav |
Python3
# Python3 program burst balloon problem. def getMax(A): N = len(A) A = [1] + A + [1]# Add Bordering Balloons dp = [[0 for x in range(N + 2)] for y in range(N + 2)]# Declare DP Array for length in range(1, N + 1): for left in range(1, N-length + 2): right = left + length -1 # For a sub-array from indices left, right # This innermost loop finds the last balloon burst for last in range(left, right + 1): dp[left][right] = max(dp[left][right], \ dp[left][last-1] + \ A[left-1]*A[last]*A[right + 1] + \ dp[last + 1][right]) return(dp[1][N])# Driver codeA = [1, 2, 3, 4, 5]print(getMax(A)) |
C#
// C# program to illustrate // Burst balloon problemusing System; class GFG{ public static int getMax(int[] A, int N) { // Add Bordering Balloons int[] B = new int[N + 2]; B[0] = B[N + 1] = 1; for(int i = 1; i <= N; i++) B[i] = A[i - 1]; // Declaring DP array int[,] dp = new int[(N + 2), (N + 2)]; for(int length = 1; length < N + 1; length++) { for(int left = 1; left < N - length + 2; left++) { int right = left + length -1; // For a sub-array from indices // left, right. This innermost // loop finds the last balloon burst for(int last = left; last < right + 1; last++) { dp[left, right] = Math.Max( dp[left, right], dp[left, last - 1] + B[left - 1] * B[last] * B[right + 1] + dp[last + 1, right]); } } } return dp[1, N]; } // Driver code public static void Main() { int[] A = new int[] { 1, 2, 3, 4, 5 }; // Size of the array int N = A.Length; // Calling function Console.WriteLine(getMax(A, N)); } }// This code is contributed by sanjoy_62 |
Javascript
<script>// Javascript program burst balloon problemfunction getMax(A, N){ // Add Bordering Balloons var B = new Array(N+2); B[0] = 1; B[N + 1] = 1; for (var i = 1; i <= N; i++) B[i] = A[i - 1]; // Declare DP Array var dp = new Array(N + 2); for (var i = 0; i < dp.length; i++) { dp[i] = new Array(N + 2).fill(0); } for (var length = 1; length < N + 1; length++) { for (var left = 1; left < N - length + 2; left++) { var right = left + length - 1; // For a sub-array from indices left, right // This innermost loop finds the last balloon burst for (var last = left; last < right + 1; last++) { dp[left][right] = Math.max(dp[left][right], dp[left][last - 1] + B[left - 1] * B[last] * B[right + 1] + dp[last + 1][right]); } } } return dp[1][N];}// Driver code var A = [ 1, 2, 3, 4, 5 ];// Size of the arrayvar N = A.length;// Calling functiondocument.write(getMax(A, N));// This code is contributed by shubhamsingh10</script> |
110
Time Complexity: O(N3)
Auxiliary Space: O(N2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



