Mahotas – Getting SURF Integral

In this article, we will see how we can get the speeded up robust integral feature of image in mahotas. In computer vision, speeded up robust features (SURF) is a patented local feature detector and descriptor. It can be used for tasks such as object recognition, image registration, classification, or 3D reconstruction. It is partly inspired by the scale-invariant feature transform (SIFT) descriptor. For this we are going to use the fluorescent microscopy image from a nuclear segmentation benchmark. We can get the image with the help of command given below
mahotas.demos.nuclear_image()
Below is the nuclear_image
In order to do this we will use surf.integral method
Syntax : surf.integral(img)
Argument : It takes image object as argument
Return : It returns numpy.ndarray
Example 1 :
Python3
# importing various librariesimport mahotasimport mahotas.demosimport mahotas as mhimport numpy as npfrom pylab import imshow, showfrom mahotas.features import surf# loading nuclear imagenuclear = mahotas.demos.nuclear_image()# filtering imagenuclear = nuclear[:, :, 0]# adding gaussian filternuclear = mahotas.gaussian_filter(nuclear, 4)# showing imageprint("Image")imshow(nuclear)show()# getting Speeded-Up Robust integral featurei_img = surf.integral(nuclear)# showing imageprint("Integral Image")imshow(i_img)show() |
Output :
Example 2 :
Python3
# importing required librariesimport numpy as npimport mahotasfrom pylab import imshow, showfrom mahotas.features import surf # loading imageimg = mahotas.imread('dog_image.png') # filtering the imageimg = img[:, :, 0] # setting gaussian filtergaussian = mahotas.gaussian_filter(img, 5) # showing imageprint("Image")imshow(gaussian)show()# getting Speeded-Up Robust integral featurei_img = surf.integral(gaussian)# showing imageprint("Integral Image")imshow(i_img)show() |
Output :




