Maximal Point Path

Given a tree with N nodes numbered from 1 to N. Each Node has a value denoting the number of points you get when you visit that Node. Each edge has a length and as soon as you travel through this edge number of points is reduced by the length of the edge, the task is to choose two nodes u and v such that the number of points is maximized at the end of the path from node u to node v.
Note: The number of points should not get negative in between the path from node u to node v.
Examples:
Input:
Output: Maximal Point Path in this case will be 2->1->3 and maximum points at the end of path will be (3-2+1-2+3) = 3
Input:
Output: Maximal Point Path in this case will be 2 -> 4 and maximum points at the end of path will be (3-1+5) = 7
Approach: This problem can be solved optimally using DP with trees concept.
Steps to solve the problem:
- Root the tree at any node say (1).
- For each of the nodes v in the tree, find the maximum points of the path passing through the node v. The answer will be the maximum of this value among all nodes in the tree.
- To calculate this value for each node, maintain a dp array, where dp[v] is the maximal points of the path starting at node v for the subtree rooted at node v. dp[v] for a node v can be calculated from points[v] + max(dp[u] – wv->u ) where u is child of node v, wv->u is length of edge connecting node v and u and points[v] is the number points at the node v.
- Now to find the maximum points of the path passing through the node v we calculate dp[u]-wv->u for each child of v and take the two biggest values from it and add points[v] in it.
- If the maximum value of dp[u]-wv->u is negative then we will take 0 instead of it.
Below is the implementation of the above approach:
C++
// C++ code for the above approach:#include <bits/stdc++.h>using namespace std;class GFG {public: // Adjacency list to store the edges. vector<vector<pair<int, int> > > adj; // To store maximum points of a path // starting at a node vector<int> dp; // Visited vector to keep trackof nodes for // which dp values has already been calculated vector<int> vis; // To store the final answer int ans = 0; // Function for visiting every node and // calculating dp values for each node. void dfs(int curr_node, vector<int>& points) { // Mark the current node as visited so // that it does not have to be visited again. vis[curr_node] = 1; // To store maximum path starting // at node minus lenght of edge connecting // that node to current node for each // child of current node. vector<int> child_nodes; // Iterating through each child // of current node. for (auto x : adj[curr_node]) { // To check whether the child has been // already visited or not if (!vis[x.first]) { // Call dfs function for the child dfs(x.first, points); } // Push the value(maximum points path // starting at this child node minus lenght // of edge) into the vector child_nodes.push_back(dp[x.first] - x.second); } // Sort the vector in decreasing order // to pick 2 maximum 2 values. sort(child_nodes.begin(), child_nodes.end(), greater<int>()); // max1-to store maximum points path // starting at child node of current // node, max2-to store second maximum // points path starting at child node // of current node. int max1 = 0, max2 = 0; if (child_nodes.size() >= 2) { max1 = max(max1, child_nodes[0]); max2 = max(max2, child_nodes[1]); } else if (child_nodes.size() >= 1) { max1 = max(max1, child_nodes[0]); } // Calculate maximum points path passing // through current node. ans = max(ans, max1 + max2 + points[curr_node]); // Store maximum points path starting // at current node in dp[curr_node] dp[curr_node] = max1 + points[curr_node]; } // To find maximal points path int MaxPointPath(int n, vector<int> points, vector<vector<int> > edges) { adj.resize(n + 1); dp.resize(n + 1); vis.resize(n + 1); // Filling adajency list for (int i = 0; i < n - 1; i++) { adj[edges[i][0]].push_back( { edges[i][1], edges[i][2] }); adj[edges[i][1]].push_back( { edges[i][0], edges[i][0] }); } // Calling dfs for node 1 dfs(1, points); return ans; }};// Driver codeint main(){ GFG obj; // Number of Vertices int n = 5; // Points at each node vector<int> points(n + 1); points[1] = 6; points[2] = 3; points[3] = 2; points[4] = 5; points[5] = 0; // Edges and their lengths vector<vector<int> > edges{ { 1, 2, 10 }, { 2, 3, 3 }, { 2, 4, 1 }, { 1, 5, 11 } }; cout << obj.MaxPointPath(n, points, edges); return 0;} |
Java
import java.util.*;class GFG { // Adjacency list to store the edges. List<List<AbstractMap.SimpleEntry<Integer, Integer>>> adj; // To store maximum points of a path starting at a node List<Integer> dp; // Visited vector to keep track of nodes for // which dp values have already been calculated List<Integer> vis; // To store the final answer int ans = 0; // Constructor GFG() { adj = new ArrayList<>(); dp = new ArrayList<>(); vis = new ArrayList<>(); } // Function for visiting every node and calculating dp values for each node. void dfs(int currNode, List<Integer> points) { // Mark the current node as visited so that it does not have to be visited again. vis.set(currNode, 1); // To store maximum path starting at node minus length of edge connecting that node to the current node for each child of the current node. List<Integer> childNodes = new ArrayList<>(); // Iterating through each child of the current node. for (AbstractMap.SimpleEntry<Integer, Integer> x : adj.get(currNode)) { // To check whether the child has been already visited or not if (vis.get(x.getKey()) == 0) { // Call dfs function for the child dfs(x.getKey(), points); } // Push the value (maximum points path starting at this child node minus length of the edge) into the vector childNodes.add(dp.get(x.getKey()) - x.getValue()); } // Sort the vector in decreasing order to pick 2 maximum 2 values. Collections.sort(childNodes, Collections.reverseOrder()); // max1 - to store the maximum points path starting at the child node of the current node, max2 - to store the second maximum points path starting at the child node of the current node. int max1 = 0, max2 = 0; if (childNodes.size() >= 2) { max1 = Math.max(max1, childNodes.get(0)); max2 = Math.max(max2, childNodes.get(1)); } else if (childNodes.size() == 1) { max1 = Math.max(max1, childNodes.get(0)); } // Calculate maximum points path passing through the current node. ans = Math.max(ans, max1 + max2 + points.get(currNode)); // Store the maximum points path starting at the current node in dp[currNode] dp.set(currNode, max1 + points.get(currNode)); } // To find the maximal points path int maxPointPath(int n, List<Integer> points, List<List<Integer>> edges) { for (int i = 0; i <= n; i++) { adj.add(new ArrayList<>()); dp.add(0); vis.add(0); } // Filling the adjacency list for (List<Integer> edge : edges) { adj.get(edge.get(0)).add(new AbstractMap.SimpleEntry<>(edge.get(1), edge.get(2))); adj.get(edge.get(1)).add(new AbstractMap.SimpleEntry<>(edge.get(0), edge.get(2))); } // Calling dfs for node 1 dfs(1, points); return ans; } // Driver code public static void main(String[] args) { GFG obj = new GFG(); // Number of Vertices int n = 5; // Points at each node List<Integer> points = new ArrayList<>(); points.add(0); // Adding an extra element at index 0 for simplicity points.add(6); points.add(3); points.add(2); points.add(5); points.add(0); // Edges and their lengths List<List<Integer>> edges = Arrays.asList( Arrays.asList(1, 2, 10), Arrays.asList(2, 3, 3), Arrays.asList(2, 4, 1), Arrays.asList(1, 5, 11) ); System.out.println(obj.maxPointPath(n, points, edges)); }} |
Python3
# Python Code Implementationclass GFG: def __init__(self): # Adjacency list to store the edges. self.adj = [] # To store maximum points of a path #starting at a node self.dp = [] # Visited vector to keep track of nodes #for which dp values has already been calculated self.vis = [] # To store the final answer self.ans = 0 # Function for visiting every node and #calculating dp values for each node. def dfs(self, curr_node, points): # Mark the current node as visited so # that it does not have to be visited again. self.vis[curr_node] = 1 # To store maximum path starting at node # minus length of edge connecting that node to # current node for each child of current node. child_nodes = [] # Iterating through each child of current node. for x in self.adj[curr_node]: # To check whether the child # has been already visited or not if not self.vis[x[0]]: # Call dfs function for the child self.dfs(x[0], points) # Push the value(maximum points path # starting at this child node minus length of edge) # into the vector child_nodes.append(self.dp[x[0]] - x[1]) # Sort the vector in decreasing # order to pick 2 maximum values. child_nodes.sort(reverse=True) # max1-to store maximum points path starting # at child node of current node, max2-to store # second maximum points path starting at # child node of current node. max1 = 0 max2 = 0 if len(child_nodes) >= 2: max1 = max(max1, child_nodes[0]) max2 = max(max2, child_nodes[1]) elif len(child_nodes) >= 1: max1 = max(max1, child_nodes[0]) # Calculate maximum points path # passing through current node. self.ans = max(self.ans, max1 + max2 + points[curr_node]) # Store maximum points path starting # at current node in dp[curr_node] self.dp[curr_node] = max1 + points[curr_node] # To find maximal points path def MaxPointPath(self, n, points, edges): self.adj = [[] for _ in range(n + 1)] self.dp = [0] * (n + 1) self.vis = [0] * (n + 1) # Filling adjacency list for i in range(n - 1): self.adj[edges[i][0]].append((edges[i][1], edges[i][2])) self.adj[edges[i][1]].append((edges[i][0], edges[i][2])) # Calling dfs for node 1 self.dfs(1, points) return self.ans# Driver codeif __name__ == "__main__": obj = GFG() # Number of Vertices n = 5 # Points at each node points = [0, 6, 3, 2, 5, 0] # Edges and their lengths edges = [ [1, 2, 10], [2, 3, 3], [2, 4, 1], [1, 5, 11] ] print(obj.MaxPointPath(n, points, edges))# This code is contributed by Sakshi |
C#
//C# code for the above approachusing System;using System.Collections.Generic;using System.Linq;class GFG{ // Adjacency list to store the edges. List<List<Tuple<int, int>>> adj = new List<List<Tuple<int, int>>>(); // To store maximum points of a path // starting at a node List<int> dp = new List<int>(); // Visited vector to keep track of nodes for // which dp values have already been calculated List<bool> vis = new List<bool>(); // To store the final answer int ans = 0; // Function for visiting every node and // calculating dp values for each node. void dfs(int currNode, List<int> points) { // Mark the current node as visited so // that it does not have to be visited again. vis[currNode] = true; // To store maximum path starting // at node minus length of edge connecting // that node to the current node for each // child of the current node. List<int> childNodes = new List<int>(); // Iterating through each child // of the current node. foreach (var edge in adj[currNode]) { int childNode = edge.Item1; int edgeLength = edge.Item2; // To check whether the child has been // already visited or not if (!vis[childNode]) { // Call dfs function for the child dfs(childNode, points); } // Push the value (maximum points path // starting at this child node minus length // of edge) into the list childNodes.Add(dp[childNode] - edgeLength); } // Sort the list in decreasing order // to pick the maximum 2 values. childNodes.Sort((a, b) => b.CompareTo(a)); // max1 - to store maximum points path // starting at a child node of the current // node, max2 - to store the second maximum // points path starting at a child node // of the current node. int max1 = 0, max2 = 0; if (childNodes.Count >= 2) { max1 = Math.Max(max1, childNodes[0]); max2 = Math.Max(max2, childNodes[1]); } else if (childNodes.Count >= 1) { max1 = Math.Max(max1, childNodes[0]); } // Calculate maximum points path passing // through the current node. ans = Math.Max(ans, max1 + max2 + points[currNode]); // Store the maximum points path starting // at the current node in dp[currNode] dp[currNode] = max1 + points[currNode]; } // To find the maximal points path int MaxPointPath(int n, List<int> points, List<List<int>> edges) { adj = new List<List<Tuple<int, int>>>(n + 1); dp = new List<int>(n + 1); vis = new List<bool>(n + 1); for (int i = 0; i <= n; i++) { adj.Add(new List<Tuple<int, int>>()); dp.Add(0); vis.Add(false); } // Filling adjacency list foreach (var edge in edges) { int u = edge[0]; int v = edge[1]; int w = edge[2]; adj[u].Add(new Tuple<int, int>(v, w)); adj[v].Add(new Tuple<int, int>(u, w)); } // Calling dfs for node 1 dfs(1, points); return ans; } static void Main() { GFG obj = new GFG(); // Number of Vertices int n = 5; // Points at each node List<int> points = new List<int>(n + 1) { 0, 6, 3, 2, 5, 0 }; // Edges and their lengths List<List<int>> edges = new List<List<int>> { new List<int> { 1, 2, 10 }, new List<int> { 2, 3, 3 }, new List<int> { 2, 4, 1 }, new List<int> { 1, 5, 11 } }; Console.WriteLine(obj.MaxPointPath(n, points, edges)); }} |
Javascript
// Javascript code for the above approachclass GFG { constructor() { // Adjacency list to store the edges. this.adj = []; // To store maximum points of a path // starting at a node this.dp = []; // Visited vector to keep track of nodes for // which dp values have already been calculated this.vis = []; // To store the final answer this.ans = 0; } // Function for visiting every node and // calculating dp values for each node. dfs(currNode, points) { // Mark the current node as visited so // that it does not have to be visited again. this.vis[currNode] = 1; // To store maximum path starting // at node minus length of edge connecting // that node to the current node for each // child of the current node. const childNodes = []; // Iterating through each child // of the current node. for (const [child, edgeLength] of this.adj[currNode]) { // To check whether the child has been // already visited or not if (!this.vis[child]) { // Call dfs function for the child this.dfs(child, points); } // Push the value (maximum points path // starting at this child node minus length // of the edge) into the vector childNodes.push(this.dp[child] - edgeLength); } // Sort the vector in decreasing order // to pick 2 maximum values. childNodes.sort((a, b) => b - a); // max1 - to store maximum points path // starting at the child node of the current // node, max2 - to store second maximum // points path starting at the child node // of the current node. let max1 = 0, max2 = 0; if (childNodes.length >= 2) { max1 = Math.max(max1, childNodes[0]); max2 = Math.max(max2, childNodes[1]); } else if (childNodes.length >= 1) { max1 = Math.max(max1, childNodes[0]); } // Calculate maximum points path passing // through the current node. this.ans = Math.max(this.ans, max1 + max2 + points[currNode]); // Store maximum points path starting // at the current node in dp[currNode] this.dp[currNode] = max1 + points[currNode]; } // To find maximal points path MaxPointPath(n, points, edges) { this.adj = Array(n + 1).fill().map(() => []); this.dp = Array(n + 1).fill(0); this.vis = Array(n + 1).fill(0); // Filling adjacency list for (let i = 0; i < n - 1; i++) { this.adj[edges[i][0]].push([edges[i][1], edges[i][2]]); this.adj[edges[i][1]].push([edges[i][0], edges[i][2]]); } // Calling dfs for node 1 this.dfs(1, points); return this.ans; }}// Driver codeconst obj = new GFG();// Number of Verticesconst n = 5;// Points at each nodeconst points = [0, 6, 3, 2, 5, 0];// Edges and their lengthsconst edges = [ [1, 2, 10], [2, 3, 3], [2, 4, 1], [1, 5, 11]];console.log(obj.MaxPointPath(n, points, edges));// This code is contributed by ragul21 |
7
Time Complexity: O(n*logn), since for each node sorting is performed on the values of its children.
Auxiliary Space : O(n), where n is the number of nodes in the tree.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



