Maximum average sum partition of an array

Given an array, we partition a row of numbers A into at most K adjacent (non-empty) groups, then the score is the sum of the average of each group. What is the maximum score that can be scored?
Examples:
Input : A = { 9, 1, 2, 3, 9 }
K = 3
Output : 20
Explanation : We can partition A into [9], [1, 2, 3], [9]. The answer is 9 + (1 + 2 + 3) / 3 + 9 = 20.
We could have also partitioned A into [9, 1], [2], [3, 9]. That partition would lead to a score of 5 + 2 + 6 = 13, which is worse.Input : A[] = { 1, 2, 3, 4, 5, 6, 7 }
K = 4
Output : 20.5
Explanation : We can partition A into [1, 2, 3, 4], [5], [6], [7]. The answer is 2.5 + 5 + 6 + 7 = 20.5.
A simple solution is to use recursion. An efficient solution is memorization where we keep the largest score upto k i.e. for 1, 2, 3… upto k;
Let memo[i][k] be the best score portioning A[i..n-1] into at most K parts. In the first group, we partition A[i..n-1] into A[i..j-1] and A[j..n-1], then our candidate partition has score average(i, j) + score(j, k-1)), where average(i, j) = (A[i] + A[i+1] + … + A[j-1]) / (j – i). We take the highest score of these.
In total, our recursion in the general case is :
memo[n][k] = max(memo[n][k], score(memo, i, A, k-1) + average(i, j))
for all i from n-1 to 1 .
Implementation:
C++
// CPP program for maximum average sum partition#include <bits/stdc++.h>using namespace std;#define MAX 1000double memo[MAX][MAX];// bottom up approach to calculate scoredouble score(int n, vector<int>& A, int k){ if (memo[n][k] > 0) return memo[n][k]; double sum = 0; for (int i = n - 1; i > 0; i--) { sum += A[i]; memo[n][k] = max(memo[n][k], score(i, A, k - 1) + sum / (n - i)); } return memo[n][k];}double largestSumOfAverages(vector<int>& A, int K){ int n = A.size(); double sum = 0; memset(memo, 0.0, sizeof(memo)); for (int i = 0; i < n; i++) { sum += A[i]; // storing averages from starting to each i ; memo[i + 1][1] = sum / (i + 1); } return score(n, A, K);}int main(){ vector<int> A = { 9, 1, 2, 3, 9 }; int K = 3; // atmost partitioning size cout << largestSumOfAverages(A, K) << endl; return 0;} |
Java
// Java program for maximum average sum partition import java.util.Arrays;import java.util.Vector;class GFG { static int MAX = 1000; static double[][] memo = new double[MAX][MAX]; // bottom up approach to calculate score public static double score(int n, Vector<Integer> A, int k) { if (memo[n][k] > 0) return memo[n][k]; double sum = 0; for (int i = n - 1; i > 0; i--) { sum += A.elementAt(i); memo[n][k] = Math.max(memo[n][k], score(i, A, k - 1) + sum / (n - i)); } return memo[n][k]; } public static double largestSumOfAverages(Vector<Integer> A, int K) { int n = A.size(); double sum = 0; for (int i = 0; i < memo.length; i++) { for (int j = 0; j < memo[i].length; j++) memo[i][j] = 0.0; } for (int i = 0; i < n; i++) { sum += A.elementAt(i); // storing averages from starting to each i ; memo[i + 1][1] = sum / (i + 1); } return score(n, A, K); } // Driver code public static void main(String[] args) { Vector<Integer> A = new Vector<>(Arrays.asList(9, 1, 2, 3, 9)); int K = 3; System.out.println(largestSumOfAverages(A, K)); }}// This code is contributed by sanjeev2552 |
Python3
# Python3 program for maximum average sum partitionMAX = 1000memo = [[0.0 for i in range(MAX)] for i in range(MAX)]# bottom up approach to calculate scoredef score(n, A, k): if (memo[n][k] > 0): return memo[n][k] sum = 0 i = n - 1 while(i > 0): sum += A[i] memo[n][k] = max(memo[n][k], score(i, A, k - 1) + int(sum / (n - i))) i -= 1 return memo[n][k]def largestSumOfAverages(A, K): n = len(A) sum = 0 for i in range(n): sum += A[i] # storing averages from starting to each i ; memo[i + 1][1] = int(sum / (i + 1)) return score(n, A, K)# Driver Codeif __name__ == '__main__': A = [9, 1, 2, 3, 9] K = 3 # atmost partitioning size print(largestSumOfAverages(A, K)) # This code is contributed by# Surendra_Gangwar |
C#
// C# program for maximum average sum partition using System;using System.Collections.Generic;class GFG { static int MAX = 1000; static double[,] memo = new double[MAX, MAX]; // bottom up approach to calculate score public static double score(int n, List<int> A, int k) { if (memo[n, k] > 0) return memo[n, k]; double sum = 0; for (int i = n - 1; i > 0; i--) { sum += A[i]; memo[n, k] = Math.Max(memo[n, k], score(i, A, k - 1) + sum / (n - i)); } return memo[n, k]; } public static double largestSumOfAverages(List<int> A, int K) { int n = A.Count; double sum = 0; for (int i = 0; i < memo.GetLength(0); i++) { for (int j = 0; j < memo.GetLength(1); j++) memo[i, j] = 0.0; } for (int i = 0; i < n; i++) { sum += A[i]; // storing averages from // starting to each i; memo[i + 1, 1] = sum / (i + 1); } return score(n, A, K); } // Driver code public static void Main(String[] args) { int [] arr = {9, 1, 2, 3, 9}; List<int> A = new List<int>(arr); int K = 3; Console.WriteLine(largestSumOfAverages(A, K)); }}// This code is contributed by Rajput-Ji |
Javascript
<script>// JavaScript program for maximum average sum partitionlet MAX = 1000;let memo = new Array(MAX).fill(0).map(() => new Array(MAX).fill(0));// bottom up approach to calculate scorefunction score(n, A, k) { if (memo[n][k] > 0) return memo[n][k]; let sum = 0; for (let i = n - 1; i > 0; i--) { sum += A[i]; memo[n][k] = Math.max(memo[n][k], score(i, A, k - 1) + sum / (n - i)); } return memo[n][k];}function largestSumOfAverages(A, K) { let n = A.length; let sum = 0; for (let i = 0; i < n; i++) { sum += A[i]; // storing averages from starting to each i ; memo[i + 1][1] = sum / (i + 1); } return score(n, A, K);}let A = [9, 1, 2, 3, 9];let K = 3; // atmost partitioning sizedocument.write(largestSumOfAverages(A, K) + "<br>");</script> |
20
Above problem can now be easily understood as dynamic programming.
Let dp(i, k) be the best score partitioning A[i:j] into at most K parts. If the first group we partition A[i:j] into ends before j, then our candidate partition has score average(i, j) + dp(j, k-1)). Recursion in the general case is dp(i, k) = max(average(i, N), (average(i, j) + dp(j, k-1))). We can precompute the prefix sums for fast execution of out code.
Implementation:
C++
// CPP program for maximum average sum partition#include <bits/stdc++.h>using namespace std;double largestSumOfAverages(vector<int>& A, int K){ int n = A.size(); // storing prefix sums double pre_sum[n+1]; pre_sum[0] = 0; for (int i = 0; i < n; i++) pre_sum[i + 1] = pre_sum[i] + A[i]; // for each i to n storing averages double dp[n] = {0}; double sum = 0; for (int i = 0; i < n; i++) dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i); for (int k = 0; k < K - 1; k++) for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) dp[i] = max(dp[i], (pre_sum[j] - pre_sum[i]) / (j - i) + dp[j]); return dp[0];}// Driver codeint main(){ vector<int> A = { 9, 1, 2, 3, 9 }; int K = 3; // atmost partitioning size cout << largestSumOfAverages(A, K) << endl; return 0;} |
Java
// Java program for maximum average sum partitionimport java.util.*;class GFG {static double largestSumOfAverages(int[] A, int K){ int n = A.length; // storing prefix sums double []pre_sum = new double[n + 1]; pre_sum[0] = 0; for (int i = 0; i < n; i++) pre_sum[i + 1] = pre_sum[i] + A[i]; // for each i to n storing averages double []dp = new double[n]; double sum = 0; for (int i = 0; i < n; i++) dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i); for (int k = 0; k < K - 1; k++) for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) dp[i] = Math.max(dp[i], (pre_sum[j] - pre_sum[i]) / (j - i) + dp[j]); return dp[0];}// Driver codepublic static void main(String[] args) { int []A = { 9, 1, 2, 3, 9 }; int K = 3; // atmost partitioning size System.out.println(largestSumOfAverages(A, K));}}// This code is contributed by PrinciRaj1992 |
Python3
# Python3 program for maximum average # sum partitiondef largestSumOfAverages(A, K): n = len(A); # storing prefix sums pre_sum = [0] * (n + 1); pre_sum[0] = 0; for i in range(n): pre_sum[i + 1] = pre_sum[i] + A[i]; # for each i to n storing averages dp = [0] * n; sum = 0; for i in range(n): dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i); for k in range(K - 1): for i in range(n): for j in range(i + 1, n): dp[i] = max(dp[i], (pre_sum[j] - pre_sum[i]) / (j - i) + dp[j]); return int(dp[0]);# Driver codeA = [ 9, 1, 2, 3, 9 ];K = 3; # atmost partitioning sizeprint(largestSumOfAverages(A, K));# This code is contributed by Rajput-Ji |
C#
// C# program for maximum average sum partitionusing System;using System.Collections.Generic; class GFG {static double largestSumOfAverages(int[] A, int K){ int n = A.Length; // storing prefix sums double []pre_sum = new double[n + 1]; pre_sum[0] = 0; for (int i = 0; i < n; i++) pre_sum[i + 1] = pre_sum[i] + A[i]; // for each i to n storing averages double []dp = new double[n]; for (int i = 0; i < n; i++) dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i); for (int k = 0; k < K - 1; k++) for (int i = 0; i < n; i++) for (int j = i + 1; j < n; j++) dp[i] = Math.Max(dp[i], (pre_sum[j] - pre_sum[i]) / (j - i) + dp[j]); return dp[0];}// Driver codepublic static void Main(String[] args) { int []A = { 9, 1, 2, 3, 9 }; int K = 3; // atmost partitioning size Console.WriteLine(largestSumOfAverages(A, K));}}// This code is contributed by PrinciRaj1992 |
Javascript
<script>// javascript program for maximum average sum partition function largestSumOfAverages(A , K) { var n = A.length; // storing prefix sums var pre_sum = Array(n + 1).fill(-1); pre_sum[0] = 0; for (var i = 0; i < n; i++) pre_sum[i + 1] = pre_sum[i] + A[i]; // for each i to n storing averages var dp = Array(n).fill(-1); var sum = 0; for (var i = 0; i < n; i++) dp[i] = (pre_sum[n] - pre_sum[i]) / (n - i); for (k = 0; k < K - 1; k++) for (i = 0; i < n; i++) for (j = i + 1; j < n; j++) dp[i] = Math.max(dp[i], (pre_sum[j] - pre_sum[i]) / (j - i) + dp[j]); return dp[0]; } // Driver code var A = [ 9, 1, 2, 3, 9 ]; var K = 3; // atmost partitioning size document.write(largestSumOfAverages(A, K));// This code is contributed by umadevi9616 </script> |
20
Time Complexity: O(n2*K)
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



