Find the number of distinct pairs of vertices which have a distance of exactly k in a tree

Given an integer k and a tree with n nodes. The task is to count the number of distinct pairs of vertices that have a distance of exactly k.
Examples:
Input: k = 2
Output: 4
Input: k = 3
Output: 2
Approach: This problem can be solved using dynamic programming. For every vertex v of the tree, we calculate values d[v][lev] (0 <= lev <= k). This value indicates the number of vertices having distance lev from v. Note that d[v][0] = 1.
Then we calculate the answer. For any vertex v number of pairs will be a product of the number of vertices at level j – 1 and level k – j.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;#define N 5005// To store vertices and value of kint n, k;vector<int> gr[N];// To store number vertices at a level iint d[N][505];// To store the final answerint ans = 0;// Function to add an edge between two nodesvoid Add_edge(int x, int y){ gr[x].push_back(y); gr[y].push_back(x);}// Function to find the number of distinct// pairs of the vertices which have a distance// of exactly k in a treevoid dfs(int v, int par){ // At level zero vertex itself is counted d[v][0] = 1; for (auto i : gr[v]) { if (i != par) { dfs(i, v); // Count the pair of vertices at // distance k for (int j = 1; j <= k; j++) ans += d[i][j - 1] * d[v][k - j]; // For all levels count vertices for (int j = 1; j <= k; j++) d[v][j] += d[i][j - 1]; } }}// Driver codeint main(){ n = 5, k = 2; // Add edges Add_edge(1, 2); Add_edge(2, 3); Add_edge(3, 4); Add_edge(2, 5); // Function call dfs(1, 0); // Required answer cout << ans; return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG { static final int N = 5005; // To store vertices and value of k static int n, k; static Vector<Integer>[] gr = new Vector[N]; // To store number vertices at a level i static int[][] d = new int[N][505]; // To store the final answer static int ans = 0; // Function to add an edge between two nodes static void Add_edge(int x, int y) { gr[x].add(y); gr[y].add(x); } // Function to find the number of distinct // pairs of the vertices which have a distance // of exactly k in a tree static void dfs(int v, int par) { // At level zero vertex itself is counted d[v][0] = 1; for (Integer i : gr[v]) { if (i != par) { dfs(i, v); // Count the pair of vertices at // distance k for (int j = 1; j <= k; j++) ans += d[i][j - 1] * d[v][k - j]; // For all levels count vertices for (int j = 1; j <= k; j++) d[v][j] += d[i][j - 1]; } } } // Driver code public static void main(String[] args) { n = 5; k = 2; for (int i = 0; i < N; i++) gr[i] = new Vector<Integer>(); // Add edges Add_edge(1, 2); Add_edge(2, 3); Add_edge(3, 4); Add_edge(2, 5); // Function call dfs(1, 0); // Required answer System.out.print(ans); }}// This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of the approachN = 5005# To store vertices and value of kn, k = 0, 0gr = [[] for i in range(N)]# To store number vertices at a level id = [[0 for i in range(505)] for i in range(N)]# To store the final answerans = 0# Function to add an edge between two nodesdef Add_edge(x, y): gr[x].append(y) gr[y].append(x)# Function to find the number of distinct# pairs of the vertices which have a distance# of exactly k in a treedef dfs(v, par): global ans # At level zero vertex itself is counted d[v][0] = 1 for i in gr[v]: if (i != par): dfs(i, v) # Count the pair of vertices at # distance k for j in range(1, k + 1): ans += d[i][j - 1] * d[v][k - j] # For all levels count vertices for j in range(1, k + 1): d[v][j] += d[i][j - 1]# Driver coden = 5k = 2# Add edgesAdd_edge(1, 2)Add_edge(2, 3)Add_edge(3, 4)Add_edge(2, 5)# Function calldfs(1, 0)# Required answerprint(ans)# This code is contributed by Mohit Kumar |
C#
// C# implementation of the approachusing System;using System.Collections.Generic;class GFG { static readonly int N = 5005; // To store vertices and value of k static int n, k; static List<int>[] gr = new List<int>[N]; // To store number vertices at a level i static int[,] d = new int[N, 505]; // To store the readonly answer static int ans = 0; // Function to add an edge between two nodes static void Add_edge(int x, int y) { gr[x].Add(y); gr[y].Add(x); } // Function to find the number of distinct // pairs of the vertices which have a distance // of exactly k in a tree static void dfs(int v, int par) { // At level zero vertex itself is counted d[v, 0] = 1; foreach (int i in gr[v]) { if (i != par) { dfs(i, v); // Count the pair of vertices at // distance k for (int j = 1; j <= k; j++) ans += d[i, j - 1] * d[v, k - j]; // For all levels count vertices for (int j = 1; j <= k; j++) d[v, j] += d[i, j - 1]; } } } // Driver code public static void Main(String[] args) { n = 5; k = 2; for (int i = 0; i < N; i++) gr[i] = new List<int>(); // Add edges Add_edge(1, 2); Add_edge(2, 3); Add_edge(3, 4); Add_edge(2, 5); // Function call dfs(1, 0); // Required answer Console.Write(ans); }}// This code is contributed by Rajput-Ji |
PHP
<?php// PHP implementation of the approach$N = 5005;// To store vertices and value of k$gr = array_fill(0, $N, array());// To store number vertices // at a level i$d = array_fill(0, $N, array_fill(0, 505, 0));// To store the final answer$ans = 0;// Function to add an edge between // two nodesfunction Add_edge($x, $y){ global $gr; array_push($gr[$x], $y); array_push($gr[$y], $x);}// Function to find the number of distinct// pairs of the vertices which have a // distance of exactly k in a treefunction dfs($v, $par){ global $d, $ans, $k, $gr; // At level zero vertex itself // is counted $d[$v][0] = 1; foreach ($gr[$v] as &$i) { if ($i != $par) { dfs($i, $v); // Count the pair of vertices // at distance k for ($j = 1; $j <= $k; $j++) $ans += $d[$i][$j - 1] * $d[$v][$k - $j]; // For all levels count vertices for ($j = 1; $j <= $k; $j++) $d[$v][$j] += $d[$i][$j - 1]; } }}// Driver code$n = 5;$k = 2;// Add edgesAdd_edge(1, 2);Add_edge(2, 3);Add_edge(3, 4);Add_edge(2, 5);// Function calldfs(1, 0);// Required answerecho $ans;// This code is contributed by mits ?> |
Javascript
<script>// Javascript implementation of the approachlet N = 5005;// To store vertices and value of klet n, k;let gr = new Array(N);// To store number vertices at a level ilet d = new Array(N);for(let i = 0 ; i < N; i++){ d[i] = new Array(505); for(let j = 0; j < 505; j++) { d[i][j] = 0; }}// To store the final answerlet ans = 0;// Function to add an edge between two nodesfunction Add_edge(x, y){ gr[x].push(y); gr[y].push(x);}// Function to find the number of distinct// pairs of the vertices which have a distance// of exactly k in a treefunction dfs(v, par){ // At level zero vertex itself is counted d[v][0] = 1; for(let i = 0; i < gr[v].length; i++) { if (gr[v][i] != par) { dfs(gr[v][i], v); // Count the pair of vertices at // distance k for(let j = 1; j <= k; j++) ans += d[gr[v][i]][j - 1] * d[v][k - j]; // For all levels count vertices for(let j = 1; j <= k; j++) d[v][j] += d[gr[v][i]][j - 1]; } }}// Driver coden = 5;k = 2;for(let i = 0; i < N; i++) gr[i] = [];// Add edgesAdd_edge(1, 2);Add_edge(2, 3);Add_edge(3, 4);Add_edge(2, 5);// Function calldfs(1, 0);// Required answerdocument.write(ans);// This code is contributed by unknown2108</script> |
Output:
4
Time Complexity: O(N)
Auxiliary Space: O(N * 505)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




