SymPy | Permutation.rank() in Python

Permutation.rank() : rank() is a sympy Python library function that returns the lexicographic rank of the permutation.
Syntax : sympy.combinatorics.permutations.Permutation.rank()
Return : lexicographic rank of the permutation
Code #1 : rank() Example
# Python code explaining # SymPy.Permutation.rank() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from sympy.combinatorics.permutations.Permutation.rank() method # creating Permutation a = Permutation([[2, 0], [3, 1]]) b = Permutation([1, 3, 5, 4, 2, 0]) print ("Permutation a - rank form : ", a.rank()) print ("Permutation b - rank form : ", b.rank()) |
Output :
Permutation a – rank form : 16
Permutation b – rank form : 191
Code #2 : rank() Example – 2D Permutation
# Python code explaining # SymPy.Permutation.rank() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from sympy.combinatorics.permutations.Permutation.rank() method # creating Permutation a = Permutation([[2, 4, 0], [3, 1, 2], [1, 5, 6]]) print ("Permutation a - rank form : ", a.rank()) |
Output :
Permutation a – rank form : 2461



