Php Program to Count rotations divisible by 8

Given a large positive number as string, count all rotations of the given number which are divisible by 8.
Examples:
Input: 8
Output: 1
Input: 40
Output: 1
Rotation: 40 is divisible by 8
          04 is not divisible by 8
Input : 13502
Output : 0
No rotation is divisible by 8
Input : 43262488612
Output : 4
Approach: For large numbers it is difficult to rotate and divide each number by 8. Therefore, ‘divisibility by 8’ property is used which says that a number is divisible by 8 if the last 3 digits of the number is divisible by 8. Here we do not actually rotate the number and check last 8 digits for divisibility, instead we count consecutive sequence of 3 digits (in circular way) which are divisible by 8.
Illustration:
Consider a number 928160 Its rotations are 928160, 092816, 609281, 160928, 816092, 281609. Now form consecutive sequence of 3-digits from the original number 928160 as mentioned in the approach. 3-digit: (9, 2, 8), (2, 8, 1), (8, 1, 6), (1, 6, 0),(6, 0, 9), (0, 9, 2) We can observe that the 3-digit number formed by the these sets, i.e., 928, 281, 816, 160, 609, 092, are present in the last 3 digits of some rotation. Thus, checking divisibility of these 3-digit numbers gives the required number of rotations.
PHP
| <?php// PHP program to count all // rotations divisible by 8// function to count of all // rotations divisible by 8functioncountRotationsDivBy8($n){    $len= strlen($n);    $count= 0;    // For single digit number    if($len== 1)     {        $oneDigit= $n[0] - '0';        if($oneDigit% 8 == 0)            return1;        return0;    }    // For two-digit numbers     // (considering all pairs)    if($len== 2)     {        // first pair        $first= ($n[0] - '0') * 10 +                  ($n[1] - '0');        // second pair        $second= ($n[1] - '0') * 10 +                   ($n[0] - '0');        if($first% 8 == 0)            $count++;        if($second% 8 == 0)            $count++;        return$count;    }    // considering all     // three-digit sequences    $threeDigit;    for($i= 0; $i< ($len- 2); $i++)     {        $threeDigit= ($n[$i] - '0') * 100 +                       ($n[$i+ 1] - '0') * 10 +                       ($n[$i+ 2] - '0');        if($threeDigit% 8 == 0)            $count++;    }    // Considering the number     // formed by the last digit    // and the first two digits    $threeDigit= ($n[$len- 1] - '0') * 100 +                   ($n[0] - '0') * 10 +                   ($n[1] - '0');    if($threeDigit% 8 == 0)        $count++;    // Considering the number     // formed by the last two    // digits and the first digit    $threeDigit= ($n[$len- 2] - '0') * 100 +                   ($n[$len- 1] - '0') * 10 +                    ($n[0] - '0');    if($threeDigit% 8 == 0)        $count++;    // required count     // of rotations    return$count;}// Driver Code$n= "43262488612";echo"Rotations: ".       countRotationsDivBy8($n);// This code is contributed by mits.?> | 
Output:
Rotations: 4
Time Complexity : O(n), where n is the number of digits in input number.
Auxiliary Space: O(1)
Please refer complete article on Count rotations divisible by 8 for more details!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
 
				 
					


