Python – Logarithmic Discrete Distribution in Statistics

scipy.stats.logser() is a Logarithmic (Log-Series, Series) discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution.
Parameters :
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).Results : Logarithmic (Log-Series, Series) discrete random variable
Code #1 : Creating Logarithmic (Log-Series, Series) discrete random variable
| # importing library  fromscipy.stats importlogser     numargs =logser .numargs  a, b =0.2, 0.8rv =logser (a, b)     print("RV : \n", rv)    | 
Output :
RV : scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C016208
Code #2 : Logarithmic (Log-Series, Series) discrete variates and probability distribution
| importnumpy as np  quantile =np.arange (0.01, 1, 0.1)   # Random Variates  R =logser .rvs(a, b, size =10)  print("Random Variates : \n", R)   # PDF  x =np.linspace(logser.ppf(0.01, a, b),                 logser.ppf(0.99, a, b), 10) R =logser.ppf(x, 1, 3) print("\nProbability Distribution : \n", R)   | 
Output :
Random Variates : [1 1 1 1 1 1 1 1 1 1] Probability Distribution : [nan nan nan nan nan nan nan nan nan nan]
Code #3 : Graphical Representation.
| importnumpy as np  importmatplotlib.pyplot as plt      distribution =np.linspace(0, np.minimum(rv.dist.b, 2))  print("Distribution : \n", distribution)      plot =plt.plot(distribution, rv.ppf(distribution))   | 
Output :
Distribution : [0. 0.04081633 0.08163265 0.12244898 0.16326531 0.20408163 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959 0.48979592 0.53061224 0.57142857 0.6122449 0.65306122 0.69387755 0.73469388 0.7755102 0.81632653 0.85714286 0.89795918 0.93877551 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347 1.2244898 1.26530612 1.30612245 1.34693878 1.3877551 1.42857143 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735 1.95918367 2. ]
Code #4 : Varying Positional Arguments
| importmatplotlib.pyplot as plt  importnumpy as np   x =np.linspace(0, 5, 100)      # Varying positional arguments  y1 =logser.ppf(x, a, b)  y2 =logser.pmf(x, a, b)  plt.plot(x, y1, "*", x, y2, "r--")   | 
Output :
 
				 
					



