Count all increasing subsequences

We are given an array of digits (values lie in range from 0 to 9). The task is to count all the sub sequences possible in array such that in each subsequence every digit is greater than its previous digits in the subsequence.
Examples:
Input : arr[] = {1, 2, 3, 4}
Output: 15
There are 15 increasing subsequences
{1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, 
{2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, 
{1,3,4}, {2,3,4}, {1,2,3,4}
Input : arr[] = {4, 3, 6, 5}
Output: 8
Sub-sequences are {4}, {3}, {6}, {5}, 
{4,6}, {4,5}, {3,6}, {3,5}
Input : arr[] = {3, 2, 4, 5, 4}
Output : 15
Sub-sequences are {3}, {2}, {4}, {3,4},
{2,4}, {5}, {3,5}, {2,5}, {4,5}, {3,2,5}
{3,4,5},{2,4,5},{4}, {3,4}, {2,4}
A Simple Solution is to use Dynamic Programming Solution of Longest Increasing Subsequence (LIS) problem. Like LIS problem, we first compute count of increasing subsequences ending at every index. Finally, we return sum of all values (In LCS problem, we return max of all values).
// We count all increasing subsequences ending at every 
// index i
subCount(i) = Count of increasing subsequences ending 
              at arr[i]. 
// Like LCS, this value can be recursively computed
subCount(i) = 1 + ? subCount(j) 
              where j is index of all elements
              such that arr[j] < arr[i] and j < i.
1 is added as every element itself is a subsequence
of size 1.
// Finally we add all counts to get the result.
Result = ? subCount(i)
         where i varies from 0 to n-1.
Illustration:
For example, arr[] = {3, 2, 4, 5, 4}
// There are no smaller elements on left of arr[0] 
// and arr[1]
subCount(0) = 1
subCount(1) = 1  
// Note that arr[0] and arr[1] are smaller than arr[2]
subCount(2) = 1 + subCount(0) + subCount(1)  = 3
subCount(3) = 1 + subCount(0) + subCount(1) + subCount(2) 
            = 1 + 1 + 1 + 3
            = 6
  
subCount(3) = 1 + subCount(0) + subCount(1)
            = 1 + 1 + 1
            = 3
                             
Result = subCount(0) + subCount(1) + subCount(2) + subCount(3)
       = 1 + 1 + 3 + 6 + 3
       = 14.
Time Complexity : O(n2) 
Auxiliary Space : O(n)
Refer this for implementation.
Method 2 (Efficient)
The above solution doesn’t use the fact that we have only 10 possible values in given array. We can use this fact by using an array count[] such that count[d] stores current count digits smaller than d.
For example, arr[] = {3, 2, 4, 5, 4}
// We create a count array and initialize it as 0.
count[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
// Note that here value is used as index to store counts
count[3] += 1  // i = 0, arr[0] = 3
          = 1    
count[2] += 1  // i = 1, arr[1] = 2
          = 1
          
// Let us compute count for arr[2] which is 4
count[4] += 1 + count[3] + count[2] 
         += 1 + 1 + 1  
         = 3
// Let us compute count for arr[3] which is 5
count[5] += 1 + count[3] + count[2] + count[4] 
         += 1 + 1 + 1 + 3
         = 6
// Let us compute count for arr[4] which is 4
count[4] += 1 + count[0] + count[1]
         += 1 + 1 + 1
         += 3
         = 3 + 3
         = 6
            
Note that count[] = {0, 0, 1, 1, 6, 6, 0, 0, 0, 0}                  
Result = count[0] + count[1] + ... + count[9]
       = 1 + 1 + 6 + 6 {count[2] = 1, count[3] = 1
                        count[4] = 6, count[5] = 6} 
       = 14
Below is the implementation of above idea.
C++
| // C++ program to count increasing subsequences// in an array of digits.#include<bits/stdc++.h>usingnamespacestd;// Function To Count all the sub-sequences// possible in which digit is greater than// all previous digits arr[] is array of n// digitsintcountSub(intarr[], intn){    // count[] array is used to store all sub-    // sequences possible using that digit    // count[] array covers all the digit    // from 0 to 9    intcount[10] = {0};    // scan each digit in arr[]    for(inti=0; i<n; i++)    {        // count all possible sub-sequences by        // the digits less than arr[i] digit        for(intj=arr[i]-1; j>=0; j--)            count[arr[i]] += count[j];        // store sum of all sub-sequences plus        // 1 in count[] array        count[arr[i]]++;    }    // now sum up the all sequences possible in    // count[] array    intresult = 0;    for(inti=0; i<10; i++)        result += count[i];    returnresult;}// Driver program to run the test caseintmain(){    intarr[] = {3, 2, 4, 5, 4};    intn = sizeof(arr)/sizeof(arr[0]);    cout << countSub(arr,n);    return0;} | 
Java
| // Java program to count increasing // subsequences in an array of digits.importjava.io.*;classGFG {    // Function To Count all the sub-sequences    // possible in which digit is greater than    // all previous digits arr[] is array of n    // digits    staticintcountSub(intarr[], intn)    {        // count[] array is used to store all        // sub-sequences possible using that         // digit count[] array covers all         // the digit from 0 to 9        intcount[] = newint[10];          // scan each digit in arr[]         for(inti = 0; i < n; i++)        {            // count all possible sub-            // sequences by the digits            // less than arr[i] digit            for(intj = arr[i] - 1; j >= 0; j--)                count[arr[i]] += count[j];                              // store sum of all sub-sequences             // plus 1 in count[] array            count[arr[i]]++;        }           // now sum up the all sequences        // possible in count[] array        intresult = 0;        for(inti = 0; i < 10; i++)            result += count[i];        returnresult;    }    // Driver program to run the test case    publicstaticvoidmain(String[] args)    {        intarr[] = {3, 2, 4, 5, 4};        intn = arr.length;        System.out.println(countSub(arr,n));    }}// This code is contributed by Prerna Saini | 
Python3
| # Python3 program to count increasing # subsequences in an array of digits.# Function To Count all the sub-# sequences possible in which digit# is greater than all previous digits# arr[] is array of n digitsdefcountSub(arr, n):    # count[] array is used to store all     # sub-sequences possible using that     # digit count[] array covers all the     # digit from 0 to 9    count =[0fori inrange(10)]    # scan each digit in arr[]    fori inrange(n):            # count all possible sub-sequences by        # the digits less than arr[i] digit        forj inrange(arr[i] -1, -1, -1):            count[arr[i]] +=count[j]        # store sum of all sub-sequences         # plus 1 in count[] array        count[arr[i]] +=1        # Now sum up the all sequences     # possible in count[] array    result =0    fori inrange(10):        result +=count[i]    returnresult# Driver Codearr =[3, 2, 4, 5, 4]n =len(arr)print(countSub(arr, n))# This code is contributed by Anant Agarwal. | 
C#
| // C# program to count increasing // subsequences in an array of digits.usingSystem;classGFG {    // Function To Count all the sub-sequences    // possible in which digit is greater than    // all previous digits arr[] is array of n    // digits    staticintcountSub(int[]arr, intn)    {        // count[] array is used to store all        // sub-sequences possible using that         // digit count[] array covers all         // the digit from 0 to 9        int[]count = newint[10];          // scan each digit in arr[]         for(inti = 0; i < n; i++)        {            // count all possible sub-            // sequences by the digits            // less than arr[i] digit            for(intj = arr[i] - 1; j >= 0; j--)                count[arr[i]] += count[j];                              // store sum of all sub-sequences             // plus 1 in count[] array            count[arr[i]]++;        }           // now sum up the all sequences        // possible in count[] array        intresult = 0;        for(inti = 0; i < 10; i++)            result += count[i];        returnresult;    }    // Driver program     publicstaticvoidMain()    {        int[]arr = {3, 2, 4, 5, 4};        intn = arr.Length;        Console.WriteLine(countSub(arr,n));    }}// This code is contributed by Anant Agarwal. | 
Javascript
| <script>// Javascript program to count increasing// subsequences in an array of digits.// Function To Count all the sub-sequences// possible in which digit is greater than// all previous digits arr[] is array of n// digitsfunctioncountSub(arr, n) {        // count[] array is used to store all sub-    // sequences possible using that digit    // count[] array covers all the digit    // from 0 to 9    let count = newArray(10).fill(0);    // Scan each digit in arr[]    for(let i = 0; i < n; i++)    {                // Count all possible sub-sequences by        // the digits less than arr[i] digit        for(let j = arr[i] - 1; j >= 0; j--)            count[arr[i]] += count[j];        // Store sum of all sub-sequences plus        // 1 in count[] array        count[arr[i]]++;    }    // Now sum up the all sequences possible in    // count[] array    let result = 0;    for(let i = 0; i < 10; i++)        result += count[i];    returnresult;}// Driver codelet arr = [ 3, 2, 4, 5, 4 ];let n = arr.length;document.write(countSub(arr, n));// This code is contributed by _saurabh_jaiswal</script> | 
14
Time Complexity : O(n) Note that the inner loop runs at most 10 times. 
Auxiliary Space : O(1) Note that count has at-most 10 elements.
This article is contributed by Shashank Mishra ( Gullu ). If you like zambiatek and would like to contribute, you can also write an article using write.zambiatek.com or mail your article to review-team@zambiatek.com. See your article appearing on the zambiatek main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
 
				 
					


