Python | SymPy Permutation.commutes_with() method

Permutation.commutes_with() : commutes_with() is a sympy Python library function that checks whether the two permutations are commuting. Suppose ‘a’ and ‘b’ are part of ‘C’, then the commutator of a and b is the ‘C’ identity if a and b commute, i.e. ab == ba.
Syntax : sympy.combinatorics.permutations.Permutation.commutes_with() Return : checks whether the two permutations are commuting
Code #1 : commutes_with() Example
Python3
| # Python code explaining # SymPy.Permutation.commutes_with()  # importing SymPy libraries fromsympy.combinatorics.partitions importPartition fromsympy.combinatorics.permutations importPermutation  # Using from sympy.combinatorics.permutations.Permutation.commutes_with() method   # creating Permutation a =Permutation([2, 0, 3, 1, 5, 4])  b =Permutation([3, 1, 2, 5, 4, 0])   print("Permutation a -commutes_with form : ", a.commutes_with(b)) print("Permutation b -commutes_with form : ", b.commutes_with(a))  | 
Output :
Permutation a – commutes_with form : False Permutation b – commutes_with form : False
Code #2 : commutes_with() Example – Self Commutator
Python3
| # Python code explaining # SymPy.Permutation.commutes_with()  # importing SymPy libraries fromsympy.combinatorics.partitions importPartition fromsympy.combinatorics.permutations importPermutation  # Using from sympy.combinatorics.permutations.Permutation.commutes_with() method   # creating Permutation a =Permutation([[2, 4, 0],                   [3, 1, 2],                  [1, 5, 6]])  # SELF COMMUTATING     print("Permutation a -commutes_with form : ", a.commutes_with(a))  | 
Output :
Permutation a – commutes_with form : True
 
				 
					


