Matplotlib.axes.Axes.set_clip_path() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
matplotlib.axes.Axes.set_clip_path() Function
The Axes.set_clip_path() function in axes module of matplotlib library is used to set the artist’s clip path.
Syntax: Axes.set_clip_path(self, path, transform=None)
Parameters: This method accepts only two parameters.
- path: This parameter is the clip path.
- transform: This parameter in which Path is converted to a TransformedPath using transform.
Returns: This method does not return any value.
Below examples illustrate the matplotlib.axes.Axes.set_clip_path() function in matplotlib.axes:
Example 1:
Input Image:
| # Implementation of matplotlib function importmatplotlib.pyplot as plt importmatplotlib.patches as patches importmatplotlib.cbook as cbook    with cbook.get_sample_data('loggf.PNG') as image_file:     image =plt.imread(image_file)   fig, ax =plt.subplots() im =ax.imshow(image) patch =patches.Rectangle((0, 0),                           260,                           200,                            transform =ax.transData) im.set_clip_path(patch)  fig.suptitle('matplotlib.axes.Axes.set_clip_path() \ function Example\n\n', fontweight ="bold")  plt.show()  | 
Output:
Example 2:
| # Implementation of matplotlib function importnumpy as np importmatplotlib.cm as cm importmatplotlib.pyplot as plt frommatplotlib.path importPath frommatplotlib.patches importPathPatch    delta =0.025 x =y =np.arange(-3.0, 3.0, delta) X, Y =np.meshgrid(x, y)  Z1 =np.exp(-X**2-Y**2) Z2 =np.exp(-(X -1)**2-(Y -1)**2) Z =(Z1 -Z2) *2  path =Path([[0, 1], [1, 0], [0, -1],             [-1, 0], [0, 1]]) patch =PathPatch(path, facecolor ='none')   fig, ax =plt.subplots() ax.add_patch(patch)   im =ax.imshow(Z,                interpolation ='bilinear',                 cmap =cm.gray,                origin ='lower',                 extent =[-3, 3, -3, 3],                clip_path =patch,                 clip_on =True)  im.set_clip_path(patch)  fig.suptitle('matplotlib.axes.Axes.set_clip_path() \ function Example\n\n', fontweight ="bold")  plt.show()  | 
Output:
 
				 
					



