SymPy | Permutation.unrank_nonlex() in Python

Permutation.unrank_nonlex() : unrank_nonlex() is a sympy Python library function which is a linear time unranking algorithm that does not respect lexicographic order.
Syntax : sympy.combinatorics.permutations.Permutation.unrank_nonlex()
Return : linear time unranking.
Code #1 : unrank_nonlex() Example
| # Python code explaining # SymPy.Permutation.unrank_nonlex()  Â# importing SymPy libraries fromsympy.combinatorics.partitions importPartition fromsympy.combinatorics.permutations importPermutation  Â# Using from  # sympy.combinatorics.permutations.Permutation.unrank_nonlex() method   Â# creating Permutation a =Permutation([[2, 0], [3, 1]])  Âb =Permutation([1, 3, 5, 4, 2, 0])  Â Âprint("Permutation a - unrank_nonlex form : ", a.unrank_nonlex(2, 5)) print("Permutation b - unrank_nonlex form : ", b.unrank_nonlex(1, 6))  | 
Output :
Permutation a – unrank_nonlex form : (1)
Permutation b – unrank_nonlex form : (0)
Code #2 : unrank_nonlex() Example
| # Python code explaining # SymPy.Permutation.unrank_nonlex()  Â# importing SymPy libraries fromsympy.combinatorics.partitions importPartition fromsympy.combinatorics.permutations importPermutation  Â# Using from  # sympy.combinatorics.permutations.Permutation.unrank_nonlex() method   Â# creating Permutation a =Permutation([[2, 4, 0],                   [3, 1, 2],                  [1, 5, 6]])  Â Âprint("Permutation a - unrank_nonlex form : ", a.unrank_nonlex(2, 8))  | 
Output :
Permutation a – unrank_nonlex form : (0 1)
 
				 
					


