Matplotlib.axes.Axes.get_picker() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
matplotlib.axes.Axes.get_picker() Function
The Axes.get_picker() function in axes module of matplotlib library is used to return the picking behavior of the artist.
Syntax: Axes.get_picker(self)
Parameters: This method does not accept any parameters.
Returns: This method the picking behavior of the artist.
Below examples illustrate the matplotlib.axes.Axes.get_picker() function in matplotlib.axes:
Example 1:
| #Implementation of matplotlib function importnumpy as np np.random.seed(19680801) importmatplotlib.pyplot as plt   volume =np.random.rayleigh(7, size=40) amount =np.random.poisson(7, size=40) ranking =np.random.normal(size=40) price =np.random.uniform(1, 7, size=40)     fig, ax =plt.subplots()     scatter =ax.scatter(volume,                      amount,                      c =ranking,                      s =price*3,                      vmin =-3,                       vmax =3,                      cmap ="Spectral")   legend1 =ax.legend(*scatter.legend_elements(num=5),                     loc ="upper left",                     title ="Ranking")  ax.add_artist(legend1)    ax.text(8, 8,"Value return : "+str(ax.get_picker()),         fontweight ="bold",         fontsize=18)     fig.suptitle('matplotlib.axes.Axes.get_picker() function \ Example', fontweight="bold")  plt.show()  | 
Output:
Example 2:
| # Implementation of matplotlib function importnumpy as np importmatplotlib.pyplot as plt   X =np.random.rand(10, 200) xs =np.mean(X, axis =1) ys =np.std(X, axis =1)  fig =plt.figure() ax =fig.add_subplot(111) line, =ax.plot(xs, ys, 'go-', picker =5)  ax.set_picker(True)   ax.text(0.48, 0.3, "Value return : "+str(ax.get_picker()),         fontweight ="bold",         fontsize =18)    fig.suptitle('matplotlib.axes.Axes.get_picker()\ function Example', fontweight ="bold")  plt.show()  | 
Output:
 
				 
					



