numpy.random.standard_cauchy() in 1Python

With the help of numpy.random.standard_cauchy() method, we can see get the random samples from a standard cauchy distribution and return the random samples.
 
Standard cauchy distribution
Syntax : numpy.random.standard_cauchy(size=None)
Return : Return the random samples as numpy array.
Example #1 :
In this example we can see that by using numpy.random.standard_cauchy() method, we are able to get the random samples of standard cauchy distribution and generate the random samples from it.
Python3
| # import numpy importnumpy as np importmatplotlib.pyplot as plt  # Using standard_cauchy() method gfg =np.random.standard_cauchy(100000)  gfg =gfg[(gfg>-25) & (gfg<25)] plt.hist(gfg, bins =100, density =True) plt.show() | 
Output :
Example #2 :
Python3
| # import numpy importnumpy as np importmatplotlib.pyplot as plt  # Using standard_cauchy() method gfg =np.random.standard_cauchy(100000) gfg1 =np.random.power([gfg>0], 100000)  plt.hist(gfg1, bins =100, density =True) plt.show() | 
Output :
 
				 
					


