SymPy | Permutation.signature() in Python

Permutation.signature() : signature() is a sympy Python library function that returns the signature of the permutation needed to place the elements of the permutation in canonical order.
Signature = (-1)^<number of inversions>
Syntax : sympy.combinatorics.permutations.Permutation.signature()
Return : signature of the permutation.
Code #1 : signature() Example
| # Python code explaining # SymPy.Permutation.signature()  # importing SymPy libraries fromsympy.combinatorics.partitions importPartition fromsympy.combinatorics.permutations importPermutation  # Using from sympy.combinatorics.permutations.Permutation.signature() method   # creating Permutation a =Permutation([[2, 0], [3, 1]])  b =Permutation([1, 3, 5, 4, 2, 0])   print("Permutation a - signature form : ", a.signature()) print("Permutation b - signature form : ", b.signature())  | 
Output :
Permutation a – signature form : 1
Permutation b – signature form : -1
Code #2 : signature() Example
| # Python code explaining # SymPy.Permutation.signature()  # importing SymPy libraries fromsympy.combinatorics.partitions importPartition fromsympy.combinatorics.permutations importPermutation  # Using from  # sympy.combinatorics.permutations.Permutation.signature() method   # creating Permutation a =Permutation([[2, 4, 0],                   [3, 1, 2],                  [1, 5, 6]])   print("Permutation a - signature form : ", a.signature())  | 
Output :
Permutation a – signature form : 1
 
				 
					


