Python | sympy.divisor_sigma() method

With the help of sympy.divisor_sigma() method, we can find the divisor function  for positive integer n. divisor_sigma(n, k) is equal to the sum of all the divisors of n raised to the power of k or sum([x**k for x in divisors(n)]).
Syntax: divisor_sigma(n, k)
Parameter:
n – It denotes an integer.
k – It denotes an integer(optional). Default for k is 1.Returns: Returns the sum of all the divisors of n raised to the power of k.
Example #1:
# import divisor_sigma() method from sympy from sympy.ntheory import divisor_sigma   n = 8  # Use divisor_sigma() method  divisor_sigma_n = divisor_sigma(n)        print("divisor_sigma({}) =  {} ".format(n, divisor_sigma_n))  # 1 ^ 1 + 2 ^ 1 + 4 ^ 1 + 8 ^ 1 = 15  | 
Output:
divisor_sigma(8) = 15
Example #2:
# import divisor_sigma() method from sympy from sympy.ntheory import divisor_sigma   n = 15k = 2  # Use divisor_sigma() method  divisor_sigma_n = divisor_sigma(n, k)        print("divisor_sigma({}, {}) =  {} ".format(n, k, divisor_sigma_n))  # 1 ^ 2 + 3 ^ 2 + 5 ^ 2 + 15 ^ 2 = 260  | 
Output:
divisor_sigma(15, 2) = 260
				
					


