sympy.integrals.transforms.inverse_sine_transform() in python

With the help of inverse_sine_transform() method, we can compute the inverse sine transformation and return the unevaluated function.
Inverse sine transformation
Syntax : inverse_sine_transform(F, k, x, **hints)
Return : Return the unevaluated function.
Example #1 :
In this example we can see that by using inverse_sine_transform() method, we are able to compute the inverse sine transformation and return the evaluated function.
Python3
# import inverse_sine_transformfrom sympy import inverse_sine_transform, exp, sqrt, gamma, pifrom sympy.abc import x, k, a  
# Using inverse_sine_transform() methodgfg = inverse_sine_transform(2**((1-2 * a)/2)*k**(a - 1)*gamma(-a / 2 + 1)/gamma((a + 1)/2), k, x)  
print(gfg) | 
Output :
x**(-a)
Example #2 :
Python3
# import inverse_sine_transformfrom sympy import inverse_sine_transform, exp, sqrt, gamma, pifrom sympy.abc import x, k, a  
# Using inverse_sine_transform() methodgfg = inverse_sine_transform(2**((1-2 * a)/2)*k**(a - 1)*gamma(-a / 2 + 1)/gamma((a + 1)/2), k, 3)  
print(gfg) | 
Output :
(1/3)**a
				
					


