Matplotlib.axis.Axis.set_clip_path() function in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
Matplotlib.axis.Axis.set_clip_path() Function
The Axis.set_clip_path() function in axis module of matplotlib library is used to set the artist’s clip path. 
 
Syntax: Axis.set_clip_path(self, path, transform=None)
Parameters: This method accepts the following parameters.
- path: This parameter is the clip path.
 - transform: This parameter in which Path is converted to a TransformedPath using transform.
 Return value: This method does not return any value.
Below examples illustrate the matplotlib.axis.Axis.set_clip_path() function in matplotlib.axis:
Example 1: 
Input Image 
 
Python3
# Implementation of matplotlib functionfrom matplotlib.axis import Axisimport matplotlib.pyplot as plt  import matplotlib.patches as patches  import matplotlib.cbook as cbook             with cbook.get_sample_data('zambiatek-logo1.PNG') as image_file:      image = plt.imread(image_file)        fig, ax = plt.subplots()  im = ax.imshow(image)  patch = patches.Rectangle((10, 10),                            560,                            500,                             transform = ax.transData)     im.set_clip_path(patch)  fig.suptitle('matplotlib.axis.Axis.set_clip_path() \function Example\n', fontweight ="bold")     plt.show()  | 
Output: 
 
Example 2:
Python3
# Implementation of matplotlib functionfrom matplotlib.axis import Axisimport numpy as np  import matplotlib.cm as cm  import matplotlib.pyplot as plt  from matplotlib.path import Path  from matplotlib.patches import PathPatch             delta = 0.025     x = y = np.arange(-3.0, 3.0, delta)  X, Y = np.meshgrid(x, y)       Z1 = np.exp(-X**2 - Y**2)  Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)  Z = (Z1 - Z2) * 2      path = Path([[0, 1], [1, 0], [0, -1],              [-1, 0], [0, 1]])  patch = PathPatch(path, facecolor ='none')        fig, ax = plt.subplots()  ax.add_patch(patch)        im = ax.imshow(Z,                 interpolation ='bilinear',                  cmap = cm.gray,                 origin ='lower',                  extent =[-3, 3, -3, 3],                 clip_path = patch,                  clip_on = True)  im.set_clip_path(patch)  fig.suptitle('matplotlib.axis.Axis.set_clip_path() \function Example\n', fontweight ="bold")     plt.show()  | 
Output:
				
					


