Javascript Program to Maximize sum of diagonal of a matrix by rotating all rows or all columns

Given a square matrix, mat[][] of dimensions N * N, the task is find the maximum sum of diagonal elements possible from the given matrix by rotating either all the rows or all the columns of the matrix by a positive integer.
Examples:
Input: mat[][] = { { 1, 1, 2 }, { 2, 1, 2 }, { 1, 2, 2 } }
Output: 6
Explanation:
Rotating all the columns of matrix by 1 modifies mat[][] to { {2, 1, 2}, {1, 2, 2}, {1, 1, 2} }.
Therefore, the sum of diagonal elements of the matrix = 2 + 2 + 2 = 6 which is the maximum possible.Input: A[][] = { { -1, 2 }, { -1, 3 } }
Output: 2
Approach: The idea is to rotate all the rows and columns of the matrix in all possible ways and calculate the maximum sum obtained. Follow the steps to solve the problem:
- Initialize a variable, say maxDiagonalSum to store the maximum possible sum of diagonal elements the matrix by rotating all the rows or columns of the matrix.
 - Rotate all the rows of the matrix by a positive integer in the range [0, N – 1] and update the value of maxDiagonalSum.
 - Rotate all the columns of the matrix by a positive integer in the range [0, N – 1] and update the value of maxDiagonalSum.
 - Finally, print the value of maxDiagonalSum.
 
Below is the implementation of the above approach:
Javascript
<script>// Javascript program to implement// the above approachlet N = 3;   // Function to find maximum sum of// diagonal elements of matrix by// rotating either rows or columnsfunction findMaximumDiagonalSumOMatrixf(A){          // Stores maximum diagonal sum of elements    // of matrix by rotating rows or columns    let maxDiagonalSum = Number.MIN_VALUE;          // Rotate all the columns by an integer    // in the range [0, N - 1]    for(let i = 0; i < N; i++)    {                  // Stores sum of diagonal elements        // of the matrix        let curr = 0;                  // Calculate sum of diagonal        // elements of the matrix        for(let j = 0; j < N; j++)        {                          // Update curr            curr += A[j][(i + j) % N];        }                   // Update maxDiagonalSum        maxDiagonalSum = Math.max(maxDiagonalSum,                                  curr);    }          // Rotate all the rows by an integer    // in the range [0, N - 1]    for(let i = 0; i < N; i++)    {                  // Stores sum of diagonal elements        // of the matrix        let curr = 0;                  // Calculate sum of diagonal        // elements of the matrix        for(let j = 0; j < N; j++)        {                          // Update curr            curr += A[(i + j) % N][j];        }                  // Update maxDiagonalSum        maxDiagonalSum = Math.max(maxDiagonalSum,                                  curr);    }    return maxDiagonalSum;}       // Driver Code    let mat = [[ 1, 1, 2 ],                    [ 2, 1, 2 ],                    [ 1, 2, 2 ]];           document.write(        findMaximumDiagonalSumOMatrixf(mat));// This code is contributed by souravghosh0416.</script> | 
6
Time Complexity: O(N2) 
Auxiliary Space: O(1)
Please refer complete article on Maximize sum of diagonal of a matrix by rotating all rows or all columns for more details!
 
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
				
					


