Ways to sum to N using Natural Numbers up to K with repetitions allowed

Given two integers N and K, the task is to find the total number of ways of representing N as the sum of positive integers in the range [1, K], where each integer can be chosen multiple times.
Examples:
Input: N = 8, K = 2
Output: 5
Explanation: All possible ways of representing N as sum of positive integers less than or equal to K are:
- {1, 1, 1, 1, 1, 1, 1, 1}, the sum is 8.
 - {2, 1, 1, 1, 1, 1, 1}, the sum is 8.
 - {2, 2, 1, 1, 1, 1}, the sum is 8.
 - 2, 2, 2, 1, 1}, the sum is 8.
 - {2, 2, 2, 2}}, the sum is 8.
 Therefore, the total number of ways is 5.
Input: N = 2, K = 2
Output: 2
Naive Approach: The simplest approach to solve the given problem is to generate all possible combinations of choosing integers over the range [1, K] and count those combinations whose sum is N.
Implementaion :
C++
//C++ program for above approach#include <bits/stdc++.h>using namespace std;// Function that return Ways to sum to N using// Natural Numbers up to K with repetitions allowedint NumberOfways(int N, int K) {         // Base case    if (N == 0) return 1;    if (N < 0 || K <= 0) return 0;         // including and not including K in sum    return NumberOfways(N - K, K) + NumberOfways(N, K - 1);}// Driver codeint main() {    int N = 8;    int K = 2;         // function call    cout << NumberOfways(N, K) << endl;    return 0;}// this code is contributed by bhardwajji | 
Java
import java.util.*;class Main {    // Function that return Ways to sum to N using    // Natural Numbers up to K with repetitions allowed    public static int NumberOfways(int N, int K)    {        // Base case        if (N == 0)            return 1;        if (N < 0 || K <= 0)            return 0;        // including and not including K in sum        return NumberOfways(N - K, K)            + NumberOfways(N, K - 1);    }    // Driver code    public static void main(String[] args)    {        int N = 8;        int K = 2;        // function call        System.out.println(NumberOfways(N, K));    }} | 
Python3
# Function that returns the number of ways to sum# to N using natural numbers up to K with repetitions alloweddef number_of_ways(N, K):    # Base case    if N == 0:        return 1    if N < 0 or K <= 0:        return 0    # Including and not including K in sum    return number_of_ways(N - K, K) + number_of_ways(N, K - 1)# Driver codeif __name__ == '__main__':    N = 8    K = 2    # Function call    print(number_of_ways(N, K)) | 
Javascript
// Function that return Ways to sum to N using// Natural Numbers up to K with repetitions allowedfunction numberOfWays(N, K) {         // Base case    if (N == 0) return 1;    if (N < 0 || K <= 0) return 0;         // including and not including K in sum    return numberOfWays(N - K, K) + numberOfWays(N, K - 1);}// Driver codelet N = 8;let K = 2;     // function callconsole.log(numberOfWays(N, K)); | 
C#
using System;class MainClass {    // Function that return Ways to sum to N using    // Natural Numbers up to K with repetitions allowed    static int NumberOfWays(int N, int K)    {        // Base case        if (N == 0)            return 1;        if (N < 0 || K <= 0)            return 0;        // including and not including K in sum        return NumberOfWays(N - K, K)            + NumberOfWays(N, K - 1);    }    // Driver code    static void Main()    {        int N = 8;        int K = 2;        // function call        Console.WriteLine(NumberOfWays(N, K));    }}// This code is contributed by user_dtewbxkn77n | 
5
Time Complexity: O(KN)
Auxiliary Space: O(1)
Efficient Approach: The above approach has Overlapping Subproblems and an Optimal Substructure. Hence, in order to optimize, Dynamic Programming is needed to be performed based on the following observations:
- Considering dp[i] stores the total number of ways for representing i as the sum of integers lying in the range [1, K], then the transition of states can be defined as:
- For i in the range [1, K] and for every j in the range [1, N]
 - The value of dp[j] is equal to (dp[j]+ dp[j – i]), for all j ? i.
 
 
Follow the steps below to solve the problem:
- Initialize an array, say dp[], with all elements as 0, to store all the recursive states.
 - Initialize dp[0] as 1.
 - Now, iterate over the range [1, K] using a variable i and perform the following steps: 
- Iterate over the range [1, N], using a variable j, and update the value of dp[j] as dp[j]+ dp[j – i], if j ? i.
 
 - After completing the above steps, print the value of dp[N] as the result.
 
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to find the total number of// ways to represent N as the sum of// integers over the range [1, K]int NumberOfways(int N, int K){    // Initialize a list    vector<int> dp(N + 1, 0);       // Update dp[0] to 1    dp[0] = 1;    // Iterate over the range [1, K + 1]    for (int row = 1; row < K + 1; row++)    {        // Iterate over the range [1, N + 1]        for (int col = 1; col < N + 1; col++)        {            // If col is greater            // than or equal to row            if (col >= row)                               // Update current                // dp[col] state                dp[col] = dp[col] + dp[col - row];          }    }    // Return the total number of ways    return(dp[N]);}// Driver Codeint main(){  int N = 8;  int K = 2;  cout << (NumberOfways(N, K));}// This code is contributed by mohit kumar 29. | 
Java
// Java program for the above approachimport java.util.*;class GFG{     // Function to find the total number of// ways to represent N as the sum of// integers over the range [1, K]static int NumberOfways(int N, int K){         // Initialize a list    int[] dp = new int[N + 1];       // Update dp[0] to 1    dp[0] = 1;    // Iterate over the range [1, K + 1]    for(int row = 1; row < K + 1; row++)    {        // Iterate over the range [1, N + 1]        for(int col = 1; col < N + 1; col++)        {                         // If col is greater            // than or equal to row            if (col >= row)                               // Update current                // dp[col] state                dp[col] = dp[col] + dp[col - row];          }    }    // Return the total number of ways    return(dp[N]);}// Driver codepublic static void main(String[] args){         // Given inputs    int N = 8;    int K = 2;         System.out.println(NumberOfways(N, K));}}// This code is contributed by offbeat | 
Python
# Python program for the above approach# Function to find the total number of# ways to represent N as the sum of# integers over the range [1, K]def NumberOfways(N, K):       # Initialize a list    dp = [0] * (N + 1)         # Update dp[0] to 1    dp[0] = 1         # Iterate over the range [1, K + 1]    for row in range(1, K + 1):               # Iterate over the range [1, N + 1]        for col in range(1, N + 1):                       # If col is greater            # than or equal to row            if (col >= row):                               # Update current                # dp[col] state                dp[col] = dp[col] + dp[col - row]                                      # Return the total number of ways    return(dp[N])# Driver CodeN = 8K = 2print(NumberOfways(N, K)) | 
Javascript
<script>// Javascript implementation for the above approach// Function to find the total number of// ways to represent N as the sum of// integers over the range [1, K]function NumberOfways(N, K){         // Initialize a list    let dp = Array.from({length: N +1}, (_, i) => 0);       // Update dp[0] to 1    dp[0] = 1;    // Iterate over the range [1, K + 1]    for(let row = 1; row < K + 1; row++)    {        // Iterate over the range [1, N + 1]        for(let col = 1; col < N + 1; col++)        {                         // If col is greater            // than or equal to row            if (col >= row)                               // Update current                // dp[col] state                dp[col] = dp[col] + dp[col - row];          }    }    // Return the total number of ways    return(dp[N]);}    // Driver Code         // Given inputs    let N = 8;    let K = 2;         document.write(NumberOfways(N, K));</script> | 
C#
// C# program for the above approachusing System;class GFG {       // Function to find the total number of    // ways to represent N as the sum of    // integers over the range [1, K]    static int NumberOfways(int N, int K)    {        // Initialize a list        int[] dp = new int[(N + 1)];        // Update dp[0] to 1        dp[0] = 1;        // Iterate over the range [1, K + 1]        for (int row = 1; row < K + 1; row++) {            // Iterate over the range [1, N + 1]            for (int col = 1; col < N + 1; col++) {                // If col is greater                // than or equal to row                if (col >= row)                    // Update current                    // dp[col] state                    dp[col] = dp[col] + dp[col - row];            }        }        // Return the total number of ways        return (dp[N]);    }    // Driver Code    public static void Main()    {        int N = 8;        int K = 2;        Console.WriteLine(NumberOfways(N, K));    }}// This code is contributed by ukasp. | 
5
Time Complexity: O(N * K)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
				
					


