pandas.isna() function in Python

This method is used to detect missing values for an array-like object. This function takes a scalar or array-like object and indicates whether values are missing (“NaN“ in numeric arrays, “None“ or “NaN“ in object arrays, “NaT“ in datetimelike).

Syntax : pandas.isna(obj)

Argument :

  • obj : scalar or array-like, Object to check for null or missing values.

Below is the implementation of the above method with some examples :

Example 1 :

Python3




# importing package
import numpy
import pandas
  
# string "deep" is not nan value
print(pandas.isna("deep"))
  
# numpy.nan represents a nan value
print(pandas.isna(numpy.nan))


Output :

False
True

Example 2 :

Python3




# importing package
import numpy
import pandas
  
# create and view data
array = numpy.array([[1, numpy.nan, 3], 
                     [4, 5, numpy.nan]])
  
print(array)
  
# numpy.nan represents a nan value
print(pandas.isna(array))


Output :

[[ 1. nan  3.]
 [ 4.  5. nan]]
[[False  True False]
 [False False  True]]

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button