Queries for bitwise AND in the given matrix

Given an N * N matrix mat[][] consisting of non-negative integers and some queries consisting of top-left and bottom-right corner of the sub-matrix, the task is to find the bit-wise AND of all the elements of the sub-matrix given in each query.
Examples:
Input: mat[][] = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}},
q[] = {{1, 1, 1, 1}, {1, 2, 2, 2}}
Output:
5
0
Query 1: Only element in the sub-matrix is 5.
Query 2: 6 AND 9 = 0Input: mat[][] = {
{12, 23, 13},
{41, 15, 46},
{75, 82, 123}},
q[] = {{0, 0, 2, 2}, {1, 1, 2, 2}}
Output:
0
2
Naive approach: Iterate through the sub-matrix and find the bit-wise AND of all the numbers in that range. This will take O(n2) time for each query in the worst case.
Efficient approach: If we look at the integers as binary number, we can easily see that condition for ith bit of our answer to be set is that ith bit of all the integers in the sub-matrix should be set. 
So, we will calculate prefix-count for each bit. We will use this to find the number of integers in the sub-matrix with ith bit set. If it is equal to the total elements of the sub-matrix then the ith bit of our answer will also be set. 
For this, we will create a 3d-array, prefix_count[][][] where prefix_count[i][x][y] will store the count of all the elements of the sub-matrix with top left corner at {0, 0} and bottom right corner at {x, y} and ith bit set. Refer 
this article to understand prefix_count in case of matrix.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>#define bitscount 32#define n 3using namespace std;// Array to store bit-wise// prefix countint prefix_count[bitscount][n][n];// Function to find the prefix sumvoid findPrefixCount(int arr[][n]){    // Loop for each bit    for (int i = 0; i < bitscount; i++) {        // Loop to find prefix-count        // for each row        for (int j = 0; j < n; j++) {            prefix_count[i][j][0] = ((arr[j][0] >> i) & 1);            for (int k = 1; k < n; k++) {                prefix_count[i][j][k] = ((arr[j][k] >> i) & 1);                prefix_count[i][j][k] += prefix_count[i][j][k - 1];            }        }    }    // Finding column-wise prefix    // count    for (int i = 0; i < bitscount; i++)        for (int j = 1; j < n; j++)            for (int k = 0; k < n; k++)                prefix_count[i][j][k] += prefix_count[i][j - 1][k];}// Function to return the result for a queryint rangeAnd(int x1, int y1, int x2, int y2){    // To store the answer    int ans = 0;    // Loop for each bit    for (int i = 0; i < bitscount; i++) {        // To store the number of variables        // with ith bit set        int p;        if (x1 == 0 and y1 == 0)            p = prefix_count[i][x2][y2];        else if (x1 == 0)            p = prefix_count[i][x2][y2]                - prefix_count[i][x2][y1 - 1];        else if (y1 == 0)            p = prefix_count[i][x2][y2]                - prefix_count[i][x1 - 1][y2];        else            p = prefix_count[i][x2][y2]                - prefix_count[i][x1 - 1][y2]                - prefix_count[i][x2][y1 - 1]                + prefix_count[i][x1 - 1][y1 - 1];        // If count of variables whose ith bit        // is set equals to the total        // elements in the sub-matrix        if (p == (x2 - x1 + 1) * (y2 - y1 + 1))            ans = (ans | (1 << i));    }    return ans;}// Driver codeint main(){    int arr[][n] = { { 1, 2, 3 },                     { 4, 5, 6 },                     { 7, 8, 9 } };    findPrefixCount(arr);    int queries[][4] = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } };    int q = sizeof(queries) / sizeof(queries[0]);    for (int i = 0; i < q; i++)        cout << rangeAnd(queries[i][0],                         queries[i][1],                         queries[i][2],                         queries[i][3])             << endl;    return 0;} | 
Java
// Java implementation of the approach class GFG{    final static int bitscount = 32 ;    final static int n = 3 ;    // Array to store bit-wise     // prefix count     static int prefix_count[][][] = new int [bitscount][n][n];          // Function to find the prefix sum     static void findPrefixCount(int arr[][])     {              // Loop for each bit         for (int i = 0; i < bitscount; i++)         {                  // Loop to find prefix-count             // for each row             for (int j = 0; j < n; j++)            {                 prefix_count[i][j][0] = ((arr[j][0] >> i) & 1);                 for (int k = 1; k < n; k++)                 {                     prefix_count[i][j][k] = ((arr[j][k] >> i) & 1);                     prefix_count[i][j][k] += prefix_count[i][j][k - 1];                 }             }         }              // Finding column-wise prefix         // count         for (int i = 0; i < bitscount; i++)             for (int j = 1; j < n; j++)                 for (int k = 0; k < n; k++)                     prefix_count[i][j][k] += prefix_count[i][j - 1][k];     }          // Function to return the result for a query     static int rangeAnd(int x1, int y1, int x2, int y2)     {              // To store the answer         int ans = 0;              // Loop for each bit         for (int i = 0; i < bitscount; i++)        {                  // To store the number of variables             // with ith bit set             int p;             if (x1 == 0 && y1 == 0)                 p = prefix_count[i][x2][y2];             else if (x1 == 0)                 p = prefix_count[i][x2][y2]                     - prefix_count[i][x2][y1 - 1];             else if (y1 == 0)                 p = prefix_count[i][x2][y2]                     - prefix_count[i][x1 - 1][y2];             else                p = prefix_count[i][x2][y2]                     - prefix_count[i][x1 - 1][y2]                     - prefix_count[i][x2][y1 - 1]                     + prefix_count[i][x1 - 1][y1 - 1];              // If count of variables whose ith bit         // is set equals to the total         // elements in the sub-matrix         if (p == (x2 - x1 + 1) * (y2 - y1 + 1))             ans = (ans | (1 << i));         }              return ans;     }          // Driver code     public static void main (String[] args)    {        int arr[][] = { { 1, 2, 3 },                         { 4, 5, 6 },                         { 7, 8, 9 } };              findPrefixCount(arr);              int queries[][] = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } };         int q = queries.length;              for (int i = 0; i < q; i++)             System.out.println( rangeAnd(queries[i][0],                             queries[i][1],                             queries[i][2],                             queries[i][3]) );    }}// This code is contributed by AnkitRai | 
Python3
# Python 3 implementation of the approachbitscount = 32n = 3# Array to store bit-wise# prefix countprefix_count = [[[0 for i in range(n)] for j in range(n)] for k in range(bitscount)]# Function to find the prefix sumdef findPrefixCount(arr):         # Loop for each bit    for i in range(bitscount):                 # Loop to find prefix-count        # for each row        for j in range(n):            prefix_count[i][j][0] = ((arr[j][0] >> i) & 1)            for k in range(1,n):                prefix_count[i][j][k] = ((arr[j][k] >> i) & 1)                prefix_count[i][j][k] += prefix_count[i][j][k - 1]    # Finding column-wise prefix    # count    for i in range(bitscount):        for j in range(1,n):            for k in range(n):                prefix_count[i][j][k] += prefix_count[i][j - 1][k]# Function to return the result for a querydef rangeOr(x1, y1, x2, y2):         # To store the answer    ans = 0    # Loop for each bit    for i in range(bitscount):                 # To store the number of variables        # with ith bit set        if (x1 == 0 and y1 == 0):            p = prefix_count[i][x2][y2]        elif (x1 == 0):            p = prefix_count[i][x2][y2] - prefix_count[i][x2][y1 - 1]        elif (y1 == 0):            p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2]        else:            p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2] - prefix_count[i][x2][y1 - 1] + prefix_count[i][x1 - 1][y1 - 1];        # If count of variables with ith bit        # set is greater than 0                     if (p == (x2 - x1 + 1) * (y2 - y1 + 1)):            ans = (ans | (1 << i))    return ans# Driver codeif __name__ == '__main__':    arr = [[1, 2, 3],            [4, 5, 6],            [7, 8, 9]]    findPrefixCount(arr)    queries = [[1, 1, 1, 1],                        [1, 2, 2, 2]]    q = len(queries)    for i in range(q):        print(rangeOr(queries[i][0],queries[i][1],queries[i][2],queries[i][3]))# This code is contributed by# Surendra_Gangwar | 
C#
// C# implementation of the approachusing System;     class GFG{    static int bitscount = 32 ;    static int n = 3 ;    // Array to store bit-wise     // prefix count     static int [,,]prefix_count = new int [bitscount,n,n];          // Function to find the prefix sum     static void findPrefixCount(int [,]arr)     {              // Loop for each bit         for (int i = 0; i < bitscount; i++)         {                  // Loop to find prefix-count             // for each row             for (int j = 0; j < n; j++)            {                 prefix_count[i,j,0] = ((arr[j,0] >> i) & 1);                 for (int k = 1; k < n; k++)                 {                     prefix_count[i, j, k] = ((arr[j,k] >> i) & 1);                     prefix_count[i, j, k] += prefix_count[i, j, k - 1];                 }              }         }              // Finding column-wise prefix         // count         for (int i = 0; i < bitscount; i++)             for (int j = 1; j < n; j++)                 for (int k = 0; k < n; k++)                     prefix_count[i, j, k] += prefix_count[i, j - 1, k];     }          // Function to return the result for a query     static int rangeAnd(int x1, int y1, int x2, int y2)     {              // To store the answer         int ans = 0;              // Loop for each bit         for (int i = 0; i < bitscount; i++)        {                  // To store the number of variables             // with ith bit set             int p;             if (x1 == 0 && y1 == 0)                 p = prefix_count[i, x2, y2];             else if (x1 == 0)                 p = prefix_count[i, x2, y2]                     - prefix_count[i, x2, y1 - 1];             else if (y1 == 0)                 p = prefix_count[i, x2, y2]                     - prefix_count[i, x1 - 1, y2];             else                p = prefix_count[i, x2, y2]                     - prefix_count[i, x1 - 1, y2]                     - prefix_count[i, x2, y1 - 1]                     + prefix_count[i, x1 - 1, y1 - 1];              // If count of variables whose ith bit         // is set equals to the total         // elements in the sub-matrix         if (p == (x2 - x1 + 1) * (y2 - y1 + 1))             ans = (ans | (1 << i));         }              return ans;     }          // Driver code     public static void Main (String[] args)    {        int [,]arr = { { 1, 2, 3 },                         { 4, 5, 6 },                         { 7, 8, 9 } };              findPrefixCount(arr);              int [,]queries = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } };         int q = queries.GetLength(0);              for (int i = 0; i < q; i++)             Console.WriteLine( rangeAnd(queries[i,0],                             queries[i,1],                             queries[i,2],                             queries[i,3]) );    }}/* This code contributed by PrinciRaj1992 */ | 
Javascript
<script>// Javascript implementation of the approach let bitscount = 32;let n = 3 ;// Array to store bit-wise // prefix count let prefix_count = new Array(bitscount); for(let i = 0; i < bitscount; i++){    prefix_count[i] = new Array(n);    for(let j = 0; j < n; j++)    {        prefix_count[i][j] = new Array(n);        for(let k = 0; k < n; k++)        {            prefix_count[i][j][k] = 0;        }    }}// Function to find the prefix sum function findPrefixCount(arr) {          // Loop for each bit     for(let i = 0; i < bitscount; i++)     {                  // Loop to find prefix-count         // for each row         for(let j = 0; j < n; j++)        {             prefix_count[i][j][0] = ((arr[j][0] >> i) & 1);             for(let k = 1; k < n; k++)             {                 prefix_count[i][j][k] = (                    (arr[j][k] >> i) & 1);                 prefix_count[i][j][k] +=                 prefix_count[i][j][k - 1];             }         }     }     // Finding column-wise prefix     // count     for(let i = 0; i < bitscount; i++)         for(let j = 1; j < n; j++)             for(let k = 0; k < n; k++)                 prefix_count[i][j][k] +=                 prefix_count[i][j - 1][k]; } // Function to return the result for a query function rangeAnd(x1, y1, x2, y2) {          // To store the answer     let ans = 0;     // Loop for each bit     for(let i = 0; i < bitscount; i++)    {                  // To store the number of variables         // with ith bit set         let p;         if (x1 == 0 && y1 == 0)             p = prefix_count[i][x2][y2];         else if (x1 == 0)             p = prefix_count[i][x2][y2]                 - prefix_count[i][x2][y1 - 1];         else if (y1 == 0)             p = prefix_count[i][x2][y2]                 - prefix_count[i][x1 - 1][y2];         else            p = prefix_count[i][x2][y2] -                 prefix_count[i][x1 - 1][y2] -                 prefix_count[i][x2][y1 - 1] +                 prefix_count[i][x1 - 1][y1 - 1];     // If count of variables whose ith bit     // is set equals to the total     // elements in the sub-matrix     if (p == (x2 - x1 + 1) * (y2 - y1 + 1))         ans = (ans | (1 << i));     }     return ans; }// Driver codelet arr = [ [ 1, 2, 3 ],             [ 4, 5, 6 ],             [ 7, 8, 9 ] ]; findPrefixCount(arr); let queries = [ [ 1, 1, 1, 1 ],                 [ 1, 2, 2, 2 ] ]; let q = queries.length; for(let i = 0; i < q; i++)     document.write(rangeAnd(queries[i][0],                             queries[i][1],                             queries[i][2],                             queries[i][3]) + "</br>");                             // This code is contributed by divyeshrabadiya07</script> | 
5 0
Time complexity for pre-computation is O(n2) and each query can be answered in O(1)
Auxiliary Space: O(n2)
 
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
				
					


