Matplotlib.axes.Axes.get_ybound() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
matplotlib.axes.Axes.get_ybound() Function
The Axes.get_ybound() function in axes module of matplotlib library is used to return the lower and upper numerical bounds of the y-axis in increasing order
Syntax: Axes.get_ybound(self)
Parameters: This method does not accepts any parameters.
Returns:This method returns the following
- lower, upper :This returns the current lower and upper y-axis bounds.
 
Note: This function can be used in place of get_ylim in various conditions.
Below examples illustrate the matplotlib.axes.Axes.get_ybound() function in matplotlib.axes:
Example 1:
# Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt      fig, (ax, ax1) = plt.subplots(1, 2) t = 3*(np.random.rand(2, 100) - .5) x = np.cos(2 * np.pi * t) y = np.sin(2 * np.pi * t)     ax.plot(x, y, 'g') lower, upper = ax.get_ybound() ax.set_title('Original Window',              fontsize = 10, fontweight ='bold')     ax1.plot(x, y, 'g') ax1.set_ybound(1.5 * lower, 0.5 * upper) ax1.set_title('Using get_ybound() function',              fontsize = 10, fontweight ='bold') fig.suptitle('matplotlib.axes.Axes.get_ybound() Example\n',              fontsize = 14, fontweight ='bold') plt.show()  | 
Output:
Example 2:
import numpy as np import matplotlib.pyplot as plt     # Fixing random state for reproducibility np.random.seed(19680801)     # the random data x = np.random.randn(1000) y = np.random.randn(1000)     # definitions for the axes left, width = 0.1, 0.65bottom, height = 0.1, 0.65spacing = 0.005        rect_scatter = [left, bottom, width, height] rect_histx = [left,                bottom + height + spacing,                width, 0.2]   rect_histy = [left + width + spacing,                bottom, 0.2, height]     # start with a rectangular Figure plt.figure()     ax_scatter = plt.axes(rect_scatter) ax_scatter.tick_params(direction ='in',                        bottom = True,                         right = True)   ax_histx = plt.axes(rect_histx) ax_histx.tick_params(direction ='in',                       labeltop = True)   ax_histy = plt.axes(rect_histy) ax_histy.tick_params(direction ='in',                       labelleft = True)     # the scatter plot: ax_scatter.scatter(2 * x, y * 2, color ="green")     # now determine nice limits by hand: binwidth = 0.05lim = np.ceil(np.abs([x, y]).max() / binwidth) * binwidth ax_scatter.set_xbound((-0.5 * lim, 0.5 * lim)) ax_scatter.set_ybound((-0.25 * lim, 0.25 * lim))     bins = np.arange(-lim, lim + binwidth, binwidth) ax_histx.hist(x, bins = bins,               color ="green")   ax_histy.hist(y, bins = bins,                color ="green",               orientation ='horizontal')     ax_histx.set_xbound(ax_scatter.get_xbound()) ax_histy.set_ybound(ax_scatter.get_ybound())     plt.show()  | 
Output:
				
					



