numpy.float_power() in Python

numpy.float_power(arr1, arr2, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None) : 
Array element from first array is raised to the power of element from second element(all happens element-wise). Both arr1 and arr2 must have same shape.
float_power differs from the power function in that integers, float16, and float32 are promoted to floats with a minimum precision of float64 such that result is always inexact. This function will return a usable result for negative powers and seldom overflow for +ve powers. 
Parameters :
arr1     : [array_like]Input array or object which works as base.
arr2     : [array_like]Input array or object which works as exponent. 
out      : [ndarray, optional]Output array with same dimensions as Input array, 
            placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function. 
           It is used when we want to handle named argument in a function.
where    : [array_like, optional]True value means to calculate the universal 
           functions(ufunc) at that position, False value means to leave the 
           value in the output alone.
Return :
An array with elements of arr1 raised to exponents in arr2
 
Code 1 : arr1 raised to arr2
# Python program explaining # float_power() function import numpy as np   # input_array arr1 = [2, 2, 2, 2, 2] arr2 = [2, 3, 4, 5, 6] print ("arr1         : ", arr1) print ("arr1         : ", arr2)   # output_array out = np.float_power(arr1, arr2) print ("\nOutput array : ", out)  | 
Output :
arr1 : [2, 2, 2, 2, 2] arr1 : [2, 3, 4, 5, 6] Output array : [ 4. 8. 16. 32. 64.]
 
Code 2 : elements of arr1 raised to exponent 2
# Python program explaining # float_power() function import numpy as np   # input_array arr1 = np.arange(8) exponent = 2print ("arr1         : ", arr1)   # output_array out = np.float_power(arr1, exponent) print ("\nOutput array : ", out)  | 
Output :
arr1 : [0 1 2 3 4 5 6 7] Output array : [ 0. 1. 4. 9. 16. 25. 36. 49.]
 
Code 3 : float_power handling results if arr2 has -ve elements
# Python program explaining # float_power() function import numpy as np   # input_array arr1 = [2, 2, 2, 2, 2] arr2 = [2, -3, 4, -5, 6] print ("arr1         : ", arr1) print ("arr2         : ", arr2)   # output_array out = np.float_power(arr1, arr2) print ("\nOutput array : ", out)  | 
Output :
arr1         :  [2, 2, 2, 2, 2]
arr2         :  [2, -3, 4, -5, 6]
Output array :  [  4.00000000e+00   1.25000000e-01   1.60000000e+01   
                3.12500000e-02   6.40000000e+01]
References : 
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.float_power.html#numpy.float_power
.
				
					


