Python – Power-Function Distribution in Statistics

scipy.stats.powerlaw() is a power-function continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.
Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).Results : power-function continuous random variable
Code #1 : Creating power-function continuous random variable
# importing library   from scipy.stats import powerlaw     numargs = powerlaw.numargs  a, b = 4.32, 3.18rv = powerlaw(a, b)      print ("RV : \n", rv)    | 
Output :
RV : scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D8295B48
Code #2 : power-function continuous variates and probability distribution
import numpy as np  quantile = np.arange (0.01, 1, 0.1)    # Random Variates  R = powerlaw.rvs(a, b)  print ("Random Variates : \n", R)    # PDF  R = powerlaw.pdf(a, b, quantile)  print ("\nProbability Distribution : \n", R)   | 
Output :
Random Variates : 3.860143037448123 Probability Distribution : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Code #3 : Graphical Representation.
import numpy as np  import matplotlib.pyplot as plt       distribution = np.linspace(0, np.minimum(rv.dist.b, 3))  print("Distribution : \n", distribution)       plot = plt.plot(distribution, rv.pdf(distribution))   | 
Output :
Distribution : [0. 0.02040816 0.04081633 0.06122449 0.08163265 0.10204082 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878 0.36734694 0.3877551 0.40816327 0.42857143 0.44897959 0.46938776 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673 0.6122449 0.63265306 0.65306122 0.67346939 0.69387755 0.71428571 0.73469388 0.75510204 0.7755102 0.79591837 0.81632653 0.83673469 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367 0.97959184 1. ]
Code #4 : Varying Positional Arguments
import matplotlib.pyplot as plt  import numpy as np       x = np.linspace(0, 5, 100)       # Varying positional arguments  y1 = powerlaw .pdf(x, 1, 3, 5)  y2 = powerlaw .pdf(x, 1, 4, 4)  plt.plot(x, y1, "*", x, y2, "r--")   | 
Output :
				
					



