Number of sub-arrays that have at least one duplicate

Given an array arr of n elements, the task is to find the number of the sub-arrays of the given array that contain at least one duplicate element.
Examples:
Input: arr[] = {1, 2, 3}
Output: 0
There is no sub-array with duplicate elements.Input: arr[] = {4, 3, 4, 3}
Output: 3
Possible sub-arrays are {4, 3, 4}, {4, 3, 4, 3} and {3, 4, 3}
Approach:
- First, find the total number of sub-arrays that can be formed from the array and denote this by total then total = (n*(n+1))/2.
- Now find the sub-arrays that have all the elements distinct (can be found out using window sliding technique) and denote this by unique.
- Finally, the number of sub-arrays that have at least one element duplicate are (total – unique)
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>#define ll long long intusing namespace std;// Function to return the count of the// sub-arrays that have at least one duplicatell count(ll arr[], ll n){ ll unique = 0; // two pointers ll i = -1, j = 0; // to store frequencies of the numbers unordered_map<ll, ll> freq; for (j = 0; j < n; j++) { freq[arr[j]]++; // number is not distinct if (freq[arr[j]] >= 2) { i++; while (arr[i] != arr[j]) { freq[arr[i]]--; i++; } freq[arr[i]]--; unique = unique + (j - i); } else unique = unique + (j - i); } ll total = n * (n + 1) / 2; return total - unique;}// Driver codeint main(){ ll arr[] = { 4, 3, 4, 3 }; ll n = sizeof(arr) / sizeof(arr[0]); cout << count(arr, n) << endl; return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG {// Function to return the count of the// sub-arrays that have at least one duplicatestatic Integer count(Integer arr[], Integer n){ Integer unique = 0; // two pointers Integer i = -1, j = 0; // to store frequencies of the numbers Map<Integer, Integer> freq = new HashMap<>(); for (j = 0; j < n; j++) { if(freq.containsKey(arr[j])) { freq.put(arr[j], freq.get(arr[j]) + 1); } else { freq.put(arr[j], 1); } // number is not distinct if (freq.get(arr[j]) >= 2) { i++; while (arr[i] != arr[j]) { freq.put(arr[i], freq.get(arr[i]) - 1); i++; } freq.put(arr[i], freq.get(arr[i]) - 1); unique = unique + (j - i); } else unique = unique + (j - i); } Integer total = n * (n + 1) / 2; return total - unique;}// Driver codepublic static void main(String[] args){ Integer arr[] = { 4, 3, 4, 3 }; Integer n = arr.length; System.out.println(count(arr, n));}}// This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach from collections import defaultdict# Function to return the count of the # sub-arrays that have at least one duplicate def count(arr, n): unique = 0 # two pointers i, j = -1, 0 # to store frequencies of the numbers freq = defaultdict(lambda:0) for j in range(0, n): freq[arr[j]] += 1 # number is not distinct if freq[arr[j]] >= 2: i += 1 while arr[i] != arr[j]: freq[arr[i]] -= 1 i += 1 freq[arr[i]] -= 1 unique = unique + (j - i) else: unique = unique + (j - i) total = (n * (n + 1)) // 2 return total - unique # Driver Codeif __name__ == "__main__": arr = [4, 3, 4, 3] n = len(arr) print(count(arr, n))# This code is contributed # by Rituraj Jain |
C#
// C# implementation of the approachusing System;using System.Collections.Generic; class GFG {// Function to return the count of the// sub-arrays that have at least one duplicatestatic int count(int []arr, int n){ int unique = 0; // two pointers int i = -1, j = 0; // to store frequencies of the numbers Dictionary<int, int> freq = new Dictionary<int, int>(); for (j = 0; j < n; j++) { if(freq.ContainsKey(arr[j])) { freq[arr[j]] = freq[arr[j]] + 1; } else { freq.Add(arr[j], 1); } // number is not distinct if (freq[arr[j]] >= 2) { i++; while (arr[i] != arr[j]) { freq[arr[i]] = freq[arr[i]] - 1; i++; } freq[arr[i]] = freq[arr[i]] - 1; unique = unique + (j - i); } else unique = unique + (j - i); } int total = n * (n + 1) / 2; return total - unique;}// Driver codepublic static void Main(String[] args){ int []arr = { 4, 3, 4, 3 }; int n = arr.Length; Console.WriteLine(count(arr, n));}}// This code is contributed by PrinciRaj1992 |
Javascript
<script>// Javascript implementation of the approach// Function to return the count of the// sub-arrays that have at least one duplicatefunction count(arr, n){ let unique = 0; // two pointers let i = -1, j = 0; // to store frequencies of the numbers let freq = new Map(); for (j = 0; j < n; j++) { if(freq.has(arr[j])){ freq.set(arr[j], freq.get(arr[j]) + 1) }else{ freq.set(arr[j], 1) } // number is not distinct if (freq.get(arr[j]) >= 2) { i++; while (arr[i] != arr[j]) { freq.set(arr[i], freq.get(arr[i]) - 1) i++; } freq.set(arr[i], freq.get(arr[i]) - 1) unique = unique + (j - i); } else unique = unique + (j - i); } let total = n *(n + 1) / 2; return total - unique;}// Driver code let arr = [ 4, 3, 4, 3 ]; let n = arr.length; document.write(count(arr, n) + "<br>");// This code is contributed by _saurabh_jaiswal</script> |
Output
3
Complexity Analysis:
- Time Complexity: O(N)
- Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



