Find the Minimum length Unsorted Subarray, sorting which makes the complete array sorted

Given an unsorted array arr[0..n-1] of size n, find the minimum length subarray arr[s..e] such that sorting this subarray makes the whole array sorted.Â
Examples:Â
- If the input array is [10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60], your program should be able to find that the subarray lies between indexes 3 and 8.
- If the input array is [0, 1, 15, 25, 6, 7, 30, 40, 50], your program should be able to find that the subarray lies between indexes 2 and 5.
Approach 1:
Idea/Intuition :
Make a temporary array same as the given array ,sort the temporary array . Now check from starting at which index the element of the given array and temporary array are unequal and store it in temporary variable s . Repeat the above From the end and store the index at another temporary variable e . The length e-s+1 is the length of smallest unequal subarray .
Algorithm :
- Declare a temporary array temp same as given array arr.
- Sort the temporary array .
- Initialize variable s with 0 and e with 0.
- Checking the unequal element from start and storing it in s variable .
- Checking the equal element from end and storing it in e variable.
- Returning (e-s+1) .
- Printing the result .
Below is the implementation of above approach .
Code :
C++
#include <bits/stdc++.h>using namespace std;Â
// function performing calculationint minLength(vector<int>& arr){    // temporary array equal to given array    vector<int> temp = arr;    // sorting the temporary array    sort(temp.begin(), temp.end());    // initializing indices    int s = 0, e = 0;    // checking the unequal element from start and storing    // it in s variable    for (int i = 0; i < arr.size(); i++) {        if (arr[i] != temp[i]) {            s = i;            break;        }    }    // checking the unequal element from end and storing it    // in e variable    for (int i = arr.size() - 1; i >= 0; i--) {        if (arr[i] != temp[i]) {            e = i;            break;        }    }    // returning minimum length    return (e - s + 1);}Â
// driver functionint main(){    // given array arr    vector<int> arr        = { 10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60 };    // calling the function performing calculation and    // printing the result    cout << "Minimum length of subarray is : "         << minLength(arr);    return 0;} |
Python3
# importing the libraryfrom typing import ListÂ
# function performing calculationdef minLength(arr: List[int]) -> int:       # temporary array equal to given array    temp = arr[:]         # sorting the temporary array    temp.sort()         # initializing indices    s = 0    e = 0         # checking the unequal element from start and storing    # it in s variable    for i in range(len(arr)):        if arr[i] != temp[i]:            s = i            break                 # checking the unequal element from end and storing it    # in e variable    for i in range(len(arr)-1, -1, -1):        if arr[i] != temp[i]:            e = i            break                 # returning minimum length    return (e - s + 1)Â
# driver functionif __name__ == '__main__':       # given array arr    arr = [10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60]         # calling the function performing calculation and    # printing the result    print("Minimum length of subarray is : ", minLength(arr))     # This code is contributed by divyansh2212 |
C#
using System;using System.Linq;Â
class Program{  //function performing calculations     static int MinLength(int[] arr)    {      //temporary array equal to given array        int[] temp = arr.ToArray();      //sorting the temporary array        Array.Sort(temp);        //initializing indices        int s = 0;        int e = 0;        //checking the unequal element from start and storing it in s variable        for (int i = 0; i < arr.Length; i++)        {            if (arr[i] != temp[i])            {                s = i;                break;            }        }        //checking the unequal elements from end and storing it in e variable        for (int i = arr.Length - 1; i >= 0; i--)        {            if (arr[i] != temp[i])            {                e = i;                break;            }        }               //returning minimum length        return e - s + 1;    }Â
    static void Main(string[] args)    {        int[] arr = new int[] { 10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60 };        Console.WriteLine("Minimum length of subarray is : " + MinLength(arr));    }}//This code is contributed by snehalsalokhe |
Java
import java.util.*;Â
public class GFG {    // function performing calculation    public static int minLength(ArrayList<Integer> arr) {        // temporary array equal to given array        ArrayList<Integer> temp = new ArrayList<Integer>(arr);        // sorting the temporary array        Collections.sort(temp);        // initializing indices        int s = 0, e = 0;        // checking the unequal element from start and storing        // it in s variable        for (int i = 0; i < arr.size(); i++) {            if (arr.get(i) != temp.get(i)) {                s = i;                break;            }        }        // checking the unequal element from end and storing it        // in e variable        for (int i = arr.size() - 1; i >= 0; i--) {            if (arr.get(i) != temp.get(i)) {                e = i;                break;            }        }        // returning minimum length        return (e - s + 1);    }Â
    // driver function    public static void main(String[] args) {        // given array arr        ArrayList<Integer> arr = new ArrayList<Integer>(            Arrays.asList(10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60)        );        // calling the function performing calculation and        // printing the result        System.out.println("Minimum length of subarray is : " + minLength(arr));    }} |
Javascript
// function performing calculationfunction minLength(arr){    // temporary array equal to given array    let temp = [];    for(let i=0;i<arr.length;i++)    {      temp.push(arr[i]);    }         // sorting the temporary array    temp.sort();         // initializing indices    let s = 0, e = 0;         // checking the unequal element from start and storing    // it in s variable    for (let i = 0; i < arr.length; i++) {        if (arr[i] != temp[i]) {            s = i;            break;        }    }         // checking the unequal element from end and storing it    // in e variable    for (let i = arr.length - 1; i >= 0; i--) {        if (arr[i] != temp[i]) {            e = i;            break;        }    }         // returning minimum length    return (e - s + 1);}Â
// driver function  // given array arrlet arr = [ 10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60 ];Â
  // calling the function performing calculation and  // printing the resultconsole.log("Minimum length of subarray is : "        + minLength(arr));         // This code is contributed by akashish__ |
Output
Minimum length of subarray is : 6
Time Complexity : O(NLog(N)) , where N is the size of given arrayÂ
Space Complexity : O(N) , Space for temporary array temp .
Approach 2:
- Find the candidate unsorted subarrayÂ
- Scan from left to right and find the first element which is greater than the next element. Let s be the index of such an element. In the above example 1, s is 3 (index of 30).Â
- Scan from right to left and find the first element (first in right to left order) which is smaller than the next element (next in right to left order). Let e be the index of such an element. In the above example 1, e is 7 (index of 31).
- Check whether sorting the candidate unsorted subarray makes the complete array sorted or not. If not, then include more elements in the subarray.Â
- Find the minimum and maximum values in arr[s..e]. Let minimum and maximum values be min and max. min and max for [30, 25, 40, 32, 31] are 25 and 40 respectively.Â
- Find the first element (if there is any) in arr[0..s-1] which is greater than min, change s to index of this element. There is no such element in above example 1.Â
- Find the last element (if there is any) in arr[e+1..n-1] which is smaller than max, change e to index of this element. In the above example 1, e is changed to 8 (index of 35)
- Print s and e.
Below is the implementation of the above approach:
C++
// C++ program to find the Minimum length Unsorted Subarray, // sorting which makes the complete array sorted#include<bits/stdc++.h>using namespace std;Â
void printUnsorted(int arr[], int n){int s = 0, e = n-1, i, max, min; Â
// step 1(a) of above algofor (s = 0; s < n-1; s++){Â Â Â Â if (arr[s] > arr[s+1])Â Â Â Â break;}if (s == n-1){Â Â Â Â cout << "The complete array is sorted";Â Â Â Â return;}Â
// step 1(b) of above algofor(e = n - 1; e > 0; e--){Â Â Â Â if(arr[e] < arr[e-1])Â Â Â Â break;}Â
// step 2(a) of above algomax = arr[s]; min = arr[s];for(i = s + 1; i <= e; i++){Â Â Â Â if(arr[i] > max)Â Â Â Â max = arr[i];Â Â Â Â if(arr[i] < min)Â Â Â Â min = arr[i];}Â
// step 2(b) of above algofor( i = 0; i < s; i++){Â Â Â Â if(arr[i] > min)Â Â Â Â { Â Â Â Â s = i;Â Â Â Â break;Â Â Â Â }Â Â Â Â } Â
// step 2(c) of above algofor( i = n -1; i >= e+1; i--){    if(arr[i] < max)    {    e = i;    break;    } }      // step 3 of above algocout << "The unsorted subarray which"     << " makes the given array" << endl     << "sorted lies between the indices "     << s << " and " << e;return;}Â
int main(){    int arr[] = {10, 12, 20, 30, 25,                 40, 32, 31, 35, 50, 60};    int arr_size = sizeof(arr)/sizeof(arr[0]);    printUnsorted(arr, arr_size);    getchar();    return 0;}Â
// This code is contributed // by Akanksha Rai |
C
// C program to find the Minimum length Unsorted Subarray, // sorting which makes the complete array sorted#include<stdio.h>  void printUnsorted(int arr[], int n){  int s = 0, e = n-1, i, max, min;      // step 1(a) of above algo  for (s = 0; s < n-1; s++)  {    if (arr[s] > arr[s+1])      break;  }  if (s == n-1)  {    printf("The complete array is sorted");    return;  }    // step 1(b) of above algo  for(e = n - 1; e > 0; e--)  {    if(arr[e] < arr[e-1])      break;  }    // step 2(a) of above algo  max = arr[s]; min = arr[s];  for(i = s + 1; i <= e; i++)  {    if(arr[i] > max)      max = arr[i];    if(arr[i] < min)      min = arr[i];  }    // step 2(b) of above algo  for( i = 0; i < s; i++)  {    if(arr[i] > min)    {       s = i;      break;    }       }     // step 2(c) of above algo  for( i = n -1; i >= e+1; i--)  {    if(arr[i] < max)    {      e = i;      break;    }   }         // step 3 of above algo  printf(" The unsorted subarray which makes the given array "         " sorted lies between the indees %d and %d", s, e);  return;}  int main(){  int arr[] = {10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60};  int arr_size = sizeof(arr)/sizeof(arr[0]);  printUnsorted(arr, arr_size);  getchar();  return 0;} |
Java
// Java program to find the Minimum length Unsorted Subarray, // sorting which makes the complete array sortedimport java.io.*;class Main{    static void printUnsorted(int arr[], int n)    {      int s = 0, e = n-1, i, max, min;               // step 1(a) of above algo      for (s = 0; s < n-1; s++)      {        if (arr[s] > arr[s+1])          break;      }      if (s == n-1)      {        System.out.println("The complete array is sorted");        return;      }             // step 1(b) of above algo      for(e = n - 1; e > 0; e--)      {        if(arr[e] < arr[e-1])          break;      }             // step 2(a) of above algo      max = arr[s]; min = arr[s];      for(i = s + 1; i <= e; i++)      {        if(arr[i] > max)          max = arr[i];        if(arr[i] < min)          min = arr[i];      }             // step 2(b) of above algo      for( i = 0; i < s; i++)      {        if(arr[i] > min)        {           s = i;          break;        }           }              // step 2(c) of above algo      for( i = n -1; i >= e+1; i--)      {        if(arr[i] < max)        {          e = i;          break;        }       }                  // step 3 of above algo      System.out.println(" The unsorted subarray which"+                         " makes the given array sorted lies"+                       " between the indices "+s+" and "+e);      return;    }           public static void main(String args[])    {      int arr[] = {10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60};      int arr_size = arr.length;      printUnsorted(arr, arr_size);    }} |
Python3
# Python3 program to find the Minimum length Unsorted Subarray, # sorting which makes the complete array sorteddef printUnsorted(arr, n):    e = n-1    # step 1(a) of above algo    for s in range(0,n-1):        if arr[s] > arr[s+1]:            break             if s == n-1:        print ("The complete array is sorted")        exit()Â
    # step 1(b) of above algo    e= n-1    while e > 0:        if arr[e] < arr[e-1]:            break        e -= 1Â
    # step 2(a) of above algo    max = arr[s]    min = arr[s]    for i in range(s+1,e+1):        if arr[i] > max:            max = arr[i]        if arr[i] < min:            min = arr[i]                 # step 2(b) of above algo    for i in range(s):        if arr[i] > min:            s = i            breakÂ
    # step 2(c) of above algo    i = n-1    while i >= e+1:        if arr[i] < max:            e = i            break        i -= 1         # step 3 of above algo    print ("The unsorted subarray which makes the given array")    print ("sorted lies between the indexes %d and %d"%( s, e))Â
arr = [10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60]arr_size = len(arr)printUnsorted(arr, arr_size)Â
# This code is contributed by Shreyanshi Arun |
C#
// C# program to find the Minimum length Unsorted Subarray, // sorting which makes the complete array sortedÂ
using System;Â
class GFG{    static void printUnsorted(int []arr, int n)    {    int s = 0, e = n-1, i, max, min;              // step 1(a) of above algo    for (s = 0; s < n-1; s++)    {        if (arr[s] > arr[s+1])        break;    }    if (s == n-1)    {        Console.Write("The complete " +                            "array is sorted");        return;    }             // step 1(b) of above algo    for(e = n - 1; e > 0; e--)    {        if(arr[e] < arr[e-1])        break;    }             // step 2(a) of above algo    max = arr[s]; min = arr[s];         for(i = s + 1; i <= e; i++)    {        if(arr[i] > max)            max = arr[i];                 if(arr[i] < min)            min = arr[i];    }             // step 2(b) of above algo    for( i = 0; i < s; i++)    {        if(arr[i] > min)        {             s = i;            break;        }        }              // step 2(c) of above algo    for( i = n -1; i >= e+1; i--)    {        if(arr[i] < max)        {            e = i;            break;        }     }                  // step 3 of above algo    Console.Write(" The unsorted subarray which"+            " makes the given array sorted lies \n"+              " between the indices "+s+" and "+e);    return;    }             public static void Main()    {        int []arr = {10, 12, 20, 30, 25, 40,                                32, 31, 35, 50, 60};        int arr_size = arr.Length;                 printUnsorted(arr, arr_size);    }}Â
// This code contributed by Sam007 |
PHP
<?php // PHP program to find the Minimum length Unsorted Subarray, // sorting which makes the complete array sortedfunction printUnsorted(&$arr, $n){    $s = 0;    $e = $n - 1;         // step 1(a) of above algo    for ($s = 0; $s < $n - 1; $s++)    {        if ($arr[$s] > $arr[$s + 1])        break;    }    if ($s == $n - 1)    {        echo "The complete array is sorted";        return;    }         // step 1(b) of above algo    for($e = $n - 1; $e > 0; $e--)    {        if($arr[$e] < $arr[$e - 1])        break;    }         // step 2(a) of above algo    $max = $arr[$s];     $min = $arr[$s];    for($i = $s + 1; $i <= $e; $i++)    {        if($arr[$i] > $max)            $max = $arr[$i];        if($arr[$i] < $min)            $min = $arr[$i];    }         // step 2(b) of above algo    for( $i = 0; $i < $s; $i++)    {        if($arr[$i] > $min)        {             $s = $i;            break;        }        }          // step 2(c) of above algo    for( $i = $n - 1; $i >= $e + 1; $i--)    {        if($arr[$i] < $max)        {            $e = $i;            break;        }     }              // step 3 of above algo    echo " The unsorted subarray which makes " .                      "the given array " . "\n" .             " sorted lies between the indees " .                               $s . " and " . $e;    return;}Â
// Driver code$arr = array(10, 12, 20, 30, 25, 40, Â Â Â Â Â Â Â Â Â Â Â Â Â 32, 31, 35, 50, 60);$arr_size = sizeof($arr);printUnsorted($arr, $arr_size);Â
// This code is contributed // by ChitraNayal?> |
Javascript
<script>Â
// Javascript program to find the Minimum length Unsorted Subarray, // sorting which makes the complete array sorted          function printUnsorted(arr,n)    {        let s = 0, e = n-1, i, max, min;         // step 1(a) of above algo         for (s = 0; s < n-1; s++)        {            if (arr[s] > arr[s+1])                 break;         }        if (s == n-1)         {            document.write("The complete array is sorted");             return;         }        // step 1(b) of above algo         for(e = n - 1; e > 0; e--)         {            if(arr[e] < arr[e-1])                 break;        }        // step 2(a) of above algo        max = arr[s]; min = arr[s];         for(i = s + 1; i <= e; i++)         {            if(arr[i] > max)                max = arr[i];            if(arr[i] < min)                 min = arr[i];        }        // step 2(b) of above algo         for( i = 0; i < s; i++)         {            if(arr[i] > min)             {                s = i;                 break;            }        }        // step 2(c) of above algo         for( i = n -1; i >= e+1; i--)         {            if(arr[i] < max)             {                e = i;                 break;             }        }        // step 3 of above algo         document.write(" The unsorted subarray which"+                          " makes the given array sorted lies"+                        " between the indees "+s+" and "+e);         return;    }    let arr=[10, 12, 20, 30, 25, 40, 32, 31, 35, 50, 60];    let arr_size = arr.length;     printUnsorted(arr, arr_size);          // This code is contributed by avanitrachhadiya2155     </script> |
Output
The unsorted subarray which makes the given array sorted lies between the indices 3 and 8
Time Complexity : O(n)Â
Auxiliary Space : O(1)
Â
Please write comments if you find the above code/algorithm incorrect, or find better ways to solve the same problem.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



