Check whether a node is leaf node or not for multiple queries

Given a tree with N vertices numbered from 0 to N – 1 where 0 is the root node. The task is to check if a node is leaf node or not for multiple queries.
Examples:
Input:
0
/ \
1 2
/ \
3 4
/
5
q[] = {0, 3, 4, 5}
Output:
No
Yes
No
Yes
From the graph, 2, 3 and 5 are the only leaf nodes.
Approach: Store the degree of all the vertices in an array degree[]. For each edge from A to B, degree[A] and degree[B] are incremented by 1. Now every node which not a root node and it has a degree of 1 is a leaf node and all the other nodes are not.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to calculate the degree of all the verticesvoid init(int degree[], vector<pair<int, int> > edges, int n){ // Initializing degree of all the vertices as 0 for (int i = 0; i < n; i++) { degree[i] = 0; } // For each edge from A to B, degree[A] and degree[B] // are increased by 1 for (int i = 0; i < edges.size(); i++) { degree[edges[i].first]++; degree[edges[i].second]++; }}// Function to perform the queriesvoid performQueries(vector<pair<int, int> > edges, vector<int> q, int n){ // To store the of degree // of all the vertices int degree[n]; // Calculate the degree for all the vertices init(degree, edges, n); // For every query for (int i = 0; i < q.size(); i++) { int node = q[i]; if (node == 0) { cout << "No\n"; continue; } // If the current node has 1 degree if (degree[node] == 1) cout << "Yes\n"; else cout << "No\n"; }}// Driver codeint main(){ // Number of vertices int n = 6; // Edges of the tree vector<pair<int, int> > edges = { { 0, 1 }, { 0, 2 }, { 1, 3 }, { 1, 4 }, { 4, 5 } }; // Queries vector<int> q = { 0, 3, 4, 5 }; // Perform the queries performQueries(edges, q, n); return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG {static class pair{ int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } // Function to calculate the degree // of all the verticesstatic void init(int degree[], pair[] edges, int n){ // Initializing degree of // all the vertices as 0 for (int i = 0; i < n; i++) { degree[i] = 0; } // For each edge from A to B, // degree[A] and degree[B] // are increased by 1 for (int i = 0; i < edges.length; i++) { degree[edges[i].first]++; degree[edges[i].second]++; }}// Function to perform the queriesstatic void performQueries(pair [] edges, int []q, int n){ // To store the of degree // of all the vertices int []degree = new int[n]; // Calculate the degree for all the vertices init(degree, edges, n); // For every query for (int i = 0; i < q.length; i++) { int node = q[i]; if (node == 0) { System.out.println("No"); continue; } // If the current node has 1 degree if (degree[node] == 1) System.out.println("Yes"); else System.out.println("No"); }}// Driver codepublic static void main(String[] args){ // Number of vertices int n = 6; // Edges of the tree pair[] edges = {new pair(0, 1), new pair(0, 2), new pair(1, 3), new pair(1, 4), new pair(4, 5)}; // Queries int []q = { 0, 3, 4, 5 }; // Perform the queries performQueries(edges, q, n);}}// This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach # Function to calculate the degree# of all the vertices def init(degree, edges, n) : # Initializing degree of # all the vertices as 0 for i in range(n) : degree[i] = 0; # For each edge from A to B, # degree[A] and degree[B] # are increased by 1 for i in range(len(edges)) : degree[edges[i][0]] += 1; degree[edges[i][1]] += 1; # Function to perform the queries def performQueries(edges, q, n) : # To store the of degree # of all the vertices degree = [0] * n; # Calculate the degree for all the vertices init(degree, edges, n); # For every query for i in range(len(q)) : node = q[i]; if (node == 0) : print("No"); continue; # If the current node has 1 degree if (degree[node] == 1) : print("Yes"); else : print("No"); # Driver code if __name__ == "__main__" : # Number of vertices n = 6; # Edges of the tree edges = [[ 0, 1 ], [ 0, 2 ], [ 1, 3 ], [ 1, 4 ], [ 4, 5 ]]; # Queries q = [ 0, 3, 4, 5 ]; # Perform the queries performQueries(edges, q, n); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approachusing System; class GFG {public class pair{ public int first, second; public pair(int first, int second) { this.first = first; this.second = second; } } // Function to calculate the degree // of all the verticesstatic void init(int []degree, pair[] edges, int n){ // Initializing degree of // all the vertices as 0 for (int i = 0; i < n; i++) { degree[i] = 0; } // For each edge from A to B, // degree[A] and degree[B] // are increased by 1 for (int i = 0; i < edges.Length; i++) { degree[edges[i].first]++; degree[edges[i].second]++; }}// Function to perform the queriesstatic void performQueries(pair [] edges, int []q, int n){ // To store the of degree // of all the vertices int []degree = new int[n]; // Calculate the degree for all the vertices init(degree, edges, n); // For every query for (int i = 0; i < q.Length; i++) { int node = q[i]; if (node == 0) { Console.WriteLine("No"); continue; } // If the current node has 1 degree if (degree[node] == 1) Console.WriteLine("Yes"); else Console.WriteLine("No"); }}// Driver codepublic static void Main(String[] args){ // Number of vertices int n = 6; // Edges of the tree pair[] edges = {new pair(0, 1), new pair(0, 2), new pair(1, 3), new pair(1, 4), new pair(4, 5)}; // Queries int []q = { 0, 3, 4, 5 }; // Perform the queries performQueries(edges, q, n);}}// This code is contributed by 29AjayKumar |
Javascript
<script>// JavaScript implementation of the approach// Function to calculate the degree of all the verticesfunction init(degree, edges, n){ // Initializing degree of all the vertices as 0 for (var i = 0; i < n; i++) { degree[i] = 0; } // For each edge from A to B, degree[A] and degree[B] // are increased by 1 for (var i = 0; i < edges.length; i++) { degree[edges[i][0]]++; degree[edges[i][1]]++; }}// Function to perform the queriesfunction performQueries( edges, q, n){ // To store the of degree // of all the vertices var degree = Array(n); // Calculate the degree for all the vertices init(degree, edges, n); // For every query for (var i = 0; i < q.length; i++) { var node = q[i]; if (node == 0) { document.write( "No<br>"); continue; } // If the current node has 1 degree if (degree[node] == 1) document.write( "Yes<br>"); else document.write( "No<br>"); }}// Driver code// Number of verticesvar n = 6;// Edges of the treevar edges = [ [ 0, 1 ], [ 0, 2 ], [ 1, 3 ], [ 1, 4 ], [ 4, 5 ]];// Queriesvar q = [ 0, 3, 4, 5 ];// Perform the queriesperformQueries(edges, q, n);</script> |
Output:
No Yes No Yes
Time complexity: O(n)
Auxiliary Space: O(n).
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



