Product of 2 numbers using recursion | Set 2

Given two numbers N and M. The task is to find the product of the 2 numbers using recursion.
Note: The numbers can be both positive or negative.
Examples:
Input : N = 5 , M = 3 Output : 15 Input : N = 5 , M = -3 Output : -15 Input : N = -5 , M = 3 Output : -15 Input : N = -5 , M = -3 Output:15
A recursive solution to the above problem for only positive numbers is already discussed in the previous article. In this post, a recursive solution for finding the product for both positive and negative numbers is discussed.
Below is the step by step approach:
- Check if one or both of the numbers are negative.
- If the number passed in the second parameter is negative swap the parameters and call the function again.
- If both of the parameters are negative call the function again and pass the absolute values of the numbers as parameters.
- If n>m call the function with swapped parameters for less execution time of the function.
- As long as m is not 0 keep on calling the function with subcase n, m-1 and return n + multrecur(n, m-1).
Below is the implementation of the above approach:
C++
// C++ program to find product of two numbers// using recursion#include <iostream>using namespace std;// Recursive function to calculate the product // of 2 integersint multrecur(int n, int m){ // case 1 : n<0 and m>0 // swap the position of n and m to keep second // parameter positive if (n > 0 && m < 0) { return multrecur(m, n); } // case 2 : both n and m are less than 0 // return the product of their absolute values else if (n < 0 && m < 0) { return multrecur((-1 * n), (-1 * m)); } // if n>m , swap n and m so that recursion // takes less time if (n > m) { return multrecur(m, n); } // as long as m is not 0 recursively call multrecur for // n and m-1 return sum of n and the product of n times m-1 else if (m != 0) { return n + multrecur(n, m - 1); } // m=0 then return 0 else { return 0; }}// Driver codeint main(){ cout << "5 * 3 = " << multrecur(5, 3) << endl; cout << "5 * (-3) = " << multrecur(5, -3) << endl; cout << "(-5) * 3 = " << multrecur(-5, 3) << endl; cout << "(-5) * (-3) = " << multrecur(-5, -3) << endl; return 0;} |
Java
//Java program to find product of two numbers//using recursionpublic class GFG { //Recursive function to calculate the product //of 2 integers static int multrecur(int n, int m) { // case 1 : n<0 and m>0 // swap the position of n and m to keep second // parameter positive if (n > 0 && m < 0) { return multrecur(m, n); } // case 2 : both n and m are less than 0 // return the product of their absolute values else if (n < 0 && m < 0) { return multrecur((-1 * n), (-1 * m)); } // if n>m , swap n and m so that recursion // takes less time if (n > m) { return multrecur(m, n); } // as long as m is not 0 recursively call multrecur for // n and m-1 return sum of n and the product of n times m-1 else if (m != 0) { return n + multrecur(n, m - 1); } // m=0 then return 0 else { return 0; } } //Driver code public static void main(String[] args) { System.out.println("5 * 3 = " + multrecur(5, 3)); System.out.println("5 * (-3) = " + multrecur(5, -3)); System.out.println("(-5) * 3 = " + multrecur(-5, 3)); System.out.println("(-5) * (-3) = " +multrecur(-5, -3)); }} |
Python3
# Python 3 program to find product of two numbers # using recursion # Recursive function to calculate the product # of 2 integers def multrecur(n, m) : # case 1 : n<0 and m>0 # swap the position of n and m to keep second # parameter positive if n > 0 and m < 0 : return multrecur(m,n) # case 2 : both n and m are less than 0 # return the product of their absolute values elif n < 0 and m < 0 : return multrecur((-1 * n),(-1 * m)) # if n>m , swap n and m so that recursion # takes less time if n > m : return multrecur(m, n) # as long as m is not 0 recursively call multrecur for # n and m-1 return sum of n and the product of n times m-1 elif m != 0 : return n + multrecur(n, m-1) # m=0 then return 0 else : return 0# Driver Codeif __name__ == "__main__" : print("5 * 3 =",multrecur(5, 3)) print("5 * (-3) =",multrecur(5, -3)) print("(-5) * 3 =",multrecur(-5, 3)) print("(-5) * (-3) =",multrecur(-5, -3))# This code is contributed by ANKITRAI1 |
C#
// C# program to find product of // two numbers using recursionusing System;class GFG {// Recursive function to calculate // the product of 2 integersstatic int multrecur(int n, int m){// case 1 : n<0 and m>0// swap the position of n and m// to keep second parameter positiveif (n > 0 && m < 0) { return multrecur(m, n);}// case 2 : both n and m are less than 0// return the product of their absolute valueselse if (n < 0 && m < 0) { return multrecur((-1 * n), (-1 * m));}// if n>m , swap n and m so that // recursion takes less timeif (n > m) { return multrecur(m, n);}// as long as m is not 0 recursively // call multrecur for n and m-1 return // sum of n and the product of n times m-1else if (m != 0){ return n + multrecur(n, m - 1);}// m=0 then return 0else{ return 0;}}// Driver codepublic static void Main() { Console.WriteLine("5 * 3 = " + multrecur(5, 3)); Console.WriteLine("5 * (-3) = " + multrecur(5, -3)); Console.WriteLine("(-5) * 3 = " + multrecur(-5, 3)); Console.WriteLine("(-5) * (-3) = " + multrecur(-5, -3));}}// This code is contributed by anuj_67 |
PHP
<?php// PHP program to find product of // two numbers using recursion// Recursive function to calculate // the product of 2 integersfunction multrecur($n, $m){ // case 1 : n<0 and m>0 // swap the position of n and m to keep second // parameter positive if ($n > 0 && $m < 0) { return multrecur($m, $n); } // case 2 : both n and m are less than 0 // return the product of their absolute values else if ($n < 0 && $m < 0) { return multrecur((-1 * $n), (-1 * $m)); } // if n>m , swap n and m so that // recursion takes less time if ($n > $m) { return multrecur($m, $n); } // as long as m is not 0 recursively call multrecur for // n and m-1 return sum of n and the product of n times m-1 else if ($m != 0) { return $n + multrecur($n, $m - 1); } // m=0 then return 0 else { return 0; }}// Driver codeecho "5 * 3 = " . multrecur(5, 3) . "\n";echo "5 * (-3) = " . multrecur(5, -3) . "\n";echo "(-5) * 3 = " . multrecur(-5, 3) . "\n";echo "(-5) * (-3) = " . multrecur(-5, -3) . "\n"; // This code is contributed by mits?> |
Javascript
<script>// Javascript program to find product // of two numbers using recursion// Recursive function to calculate the// product of 2 integersfunction multrecur(n, m){ // case 1 : n<0 and m>0 // Swap the position of n and m to // keep second parameter positive if (n > 0 && m < 0) { return multrecur(m, n); } // case 2 : both n and m are less than 0 // return the product of their absolute values else if (n < 0 && m < 0) { return multrecur((-1 * n), (-1 * m)); } // If n>m , swap n and m so that recursion // takes less time if (n > m) { return multrecur(m, n); } // As long as m is not 0 recursively // call multrecur for n and m-1 // return sum of n and the product // of n times m-1 else if (m != 0) { return n + multrecur(n, m - 1); } // m=0 then return 0 else { return 0; }}// Driver codedocument.write("5 * 3 = " + multrecur(5, 3) + "<br>");document.write("5 * (-3) = " + multrecur(5, -3) + "<br>");document.write("(-5) * 3 = " + multrecur(-5, 3) + "<br>");document.write("(-5) * (-3) = " + multrecur(-5, -3) + "<br>");// This code is contributed by rutvik_56</script> |
Output:
5 * 3 = 15 5 * (-3) = -15 (-5) * 3 = -15 (-5) * (-3) = 15
Time Complexity: O(max(N, M))
Auxiliary Space: O(max(N, M))
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



