Print N lines of 4 numbers such that every pair among 4 numbers has a GCD K

Given N and K, the task is to print N lines where each line contains 4 numbers such that every among those 4 numbers has a GCD K and the maximum number used in N*4 should be minimized.
Note: In case of multiple outputs, print any one.Â
Examples:Â
Input: N = 1, K = 1Â
Output: 1 2 3 5Â
Every pair among 1, 2, 3 and 5 gives a GCD K and the largest number among these is 5 which the minimum possible.ÂInput: 2 2Â
Output:Â
2 4 6 22Â
14 18 10 16
In the above input, the maximum number is 22, which is the minimum possible to make 2 lines of 4 numbers.Â
Approach: The first observation is that if we can solve the given problem for K=1, we can solve the problem with GCD K by simply multiplying the answers with K. We know that any three consecutive odd numbers have a GCD 1 always when paired, so three numbers of every line can be easily obtained. Hence the lines will look like:Â
1 3 5 _ 7 9 11 _ 13 15 17 _ . . .
An even number cannot be inserted always, because inserting 6 in third line will give GCD(6, 9) as 3. So the best number that can be inserted is a number between the first two off numbers of every line. Hence the pattern looks like:Â Â
1 2 3 5 7 8 9 11 13 14 15 17 . . .
To obtain given GCD K, one can easily multiply K to the obtained numbers. Hence for i-th line:Â Â
- the first number will be k * (6*i+1)
- the second number will be k * (6*i+1)
- the third number will be k * (6*i+3)
- the fourth number will be k * (6*i+5)
The maximum number among N*4 numbers will be k * (6*i – 1)Â
Below is the implementation of the above approach. Â
C++
// C++ implementation of the// above approachÂ
#include <bits/stdc++.h>using namespace std;Â
// Function to print N linesvoid printLines(int n, int k){    // Iterate N times to print N lines    for (int i = 0; i < n; i++) {        cout << k * (6 * i + 1) << " "             << k * (6 * i + 2) << " "             << k * (6 * i + 3) << " "             << k * (6 * i + 5) << endl;    }}// Driver Codeint main(){    int n = 2, k = 2;    printLines(n, k);    return 0;} |
Java
// Java implementation of the// above approachÂ
import java.util.*;import java.lang.*;import java.io.*;Â
class GFG{// Function to print N linesstatic void printLines(int n, int k){    // Iterate N times to print N lines    for (int i = 0; i < n; i++) {        System.out.println ( k * (6 * i + 1) + " "            + k * (6 * i + 2) + " "            + k * (6 * i + 3) + " "            + k * (6 * i + 5) );    }}// Driver Codepublic static void main(String args[]){    int n = 2, k = 2;    printLines(n, k);}} |
Python3
# Python implementation of the# above approach. Â
# Function to print N lines def printLines(n, k) :Â
    # Iterate N times to print N lines    for i in range(n) :        print( k * (6 * i + 1),                k * (6 * i + 2),               k * (6 * i + 3),               k * (6 * i + 5))         # Driver code    if __name__ == "__main__" :Â
    n, k = 2, 2    printLines(n, k)Â
# This code is contributed by ANKITRAI1 |
PHP
<?php// Function to print N linesfunction printLines($n, $k){    // Iterate N times to print N lines    for ($i = 0; $i < $n; $i++)     {        echo ($k * (6 * $i + 1));        echo (" ");        echo ($k * (6 * $i + 2));        echo (" ");        echo ($k * (6 * $i + 3));         echo (" ");        echo ($k * (6 * $i + 5));        echo ("\n");    }}Â
// Driver Code$n = 2;$k = 2;printLines($n, $k);Â Â Â Â Â // This code is contributed // by Shivi_Aggarwal?> |
C#
// C# implementation of the// above approachusing System;Â
class GFG{// Function to print N linesstatic void printLines(int n, int k){    // Iterate N times to print N lines    for (int i = 0; i < n; i++)    {        Console.WriteLine ( k * (6 * i + 1) + " " +                            k * (6 * i + 2) + " " +                            k * (6 * i + 3) + " " +                             k * (6 * i + 5) );    }}Â
// Driver Codepublic static void Main(){Â Â Â Â int n = 2, k = 2;Â Â Â Â printLines(n, k);}}Â
// This code is contributed// by Akanksha Rai(Abby_akku) |
Javascript
<script>// javascript implementation of the// above approachÂ
    // Function to print N lines    function printLines(n , k)    {             // Iterate N times to print N lines        for (i = 0; i < n; i++)        {            document.write(k * (6 * i + 1)             + " " + k * (6 * i + 2) + " "            + k * (6 * i + 3) + " "            + k * (6 * i + 5)+"<br/>");        }    }Â
    // Driver Code        var n = 2, k = 2;        printLines(n, k);Â
// This code is contributed by umadevi9616 </script> |
2 4 6 10 14 16 18 22
Â
Time Complexity: O(N*4), as we are using a loop to traverse N times and doing 4 operations in each traversal.
Auxiliary Space: O(1), as we are not using any extra space.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!


