Remove all nodes from a Doubly Linked List containing Fibonacci numbers

Given a doubly linked list containing N nodes, the task is to remove all the nodes from the list which contains Fibonacci numbers.
Examples:
Input: DLL = 15 <=> 16 <=> 8 <=> 7 <=> 13
Output: 15 <=> 16 <=> 7
Explanation:
The linked list contains two fibonacci numbers 8 and 13.
Hence, these nodes have been deleted.
Input: DLL = 5 <=> 3 <=> 4 <=> 2 <=> 9
Output: 4 <=> 9
Explanation:
The linked list contains three fibonacci numbers 5, 3 and 2.
Hence, these nodes have been deleted.
Approach: The idea is to use hashing to store and check the Fibonacci numbers.
- Traverse through the entire doubly linked list and obtain the maximum value in the list.
- Now, in order to check for the Fibonacci numbers, build a hash table containing all the Fibonacci numbers less than or equal to the maximum value in the linked list.
- Finally, traverse the nodes of the doubly linked list one by one and remove the nodes which contain Fibonacci numbers as their data value.
Below is the implementation of the above approach:
C++
// C++ implementation to delete all// Fibonacci nodes from the// doubly linked list#include using namespace std;// Node of the doubly linked liststruct Node { int data; Node *prev, *next;};// Function to insert a node at the beginning// of the Doubly Linked Listvoid push(Node** head_ref, int new_data){ // Allocate the node Node* new_node = (Node*)malloc(sizeof(struct Node)); // Insert the data new_node->data = new_data; // Since we are adding at the beginning, // prev is always NULL new_node->prev = NULL; // Link the old list of the new node new_node->next = (*head_ref); // Change the prev of head node to new node if ((*head_ref) != NULL) (*head_ref)->prev = new_node; // Move the head to point to the new node (*head_ref) = new_node;}// Function to find the largest// nodes in the Doubly Linked Listint LargestInDLL(struct Node** head_ref){ struct Node *max, *temp; // Initialize two-pointer temp // and max on the head node temp = max = *head_ref; // Traverse the whole doubly linked list while (temp != NULL) { // If temp's data is greater than // the max's data, then max = temp // and return max->data if (temp->data > max->data) max = temp; temp = temp->next; } return max->data;}// Function to create hash table to// check Fibonacci numbersvoid createHash(set& hash, int maxElement){ int prev = 0, curr = 1; hash.insert(prev); hash.insert(curr); // Inserting the Fibonacci numbers // until the maximum element in the // Linked List while (curr pointer to head node pointer.// del --> pointer to node to be deletedvoid deleteNode(Node** head_ref, Node* del){ // Base case if (*head_ref == NULL || del == NULL) return; // If the node to be deleted is head node if (*head_ref == del) *head_ref = del->next; // Change next only if node to be // deleted is not the last node if (del->next != NULL) del->next->prev = del->prev; // Change prev only if node to be // deleted is not the first node if (del->prev != NULL) del->prev->next = del->next; // Finally, free the memory // occupied by del free(del); return;}// Function to delete all fibonacci nodes// from the doubly linked listvoid deleteFibonacciNodes(Node** head_ref){ // Find the largest node value // in Doubly Linked List int maxEle = LargestInDLL(head_ref); // Creating a set containing // all the fibonacci numbers // upto the maximum data value // in the Doubly Linked List set hash; createHash(hash, maxEle); Node* ptr = *head_ref; Node* next; // Iterating through the linked list while (ptr != NULL) { next = ptr->next; // If node's data is fibonacci, // delete node 'ptr' if (hash.find(ptr->data) != hash.end()) deleteNode(head_ref, ptr); ptr = next; }}// Function to print nodes in a// given doubly linked listvoid printList(Node* head){ while (head != NULL) { cout <data <next; }}// Driver programint main(){ Node* head = NULL; // Create the doubly linked list // 15 16 8 6 13 push(&head, 13); push(&head, 6); push(&head, 8); push(&head, 16); push(&head, 15); cout << "Original List: "; printList(head); deleteFibonacciNodes(&head); cout << "\nModified List: "; printList(head);} |
Java
// Java implementation to delete all Fibonacci nodes from// the doubly linked listimport java.io.*;import java.util.*;class GFG { // Node of a doubly linked list class Node { int data; Node next, prev; } Node head = null; HashSet<Integer> hashset = new HashSet<Integer>(); // Function to add a node at the beginning of the doubly // linked list. public Node push(int new_data) { // Allocate the node Node new_node = new Node(); // Insert the data new_node.data = new_data; // Since we are adding at the beginning, prev is // always null new_node.prev = null; // Link the old list of the new node new_node.next = head; // change the prev of head node to new node if (head != null) { head.prev = new_node; } // move the head to point to the new node. head = new_node; return head; } // Function to find the largest nodes in the doubly // linked list. public int LargestInDLL() { // Initialize two pointer temp and max on to the // head node. Node max = head; Node temp = head; // Traverse the whole doubly linked list while (temp != null) { // If temp's data is greater than the max's // data, then max = temp and return max.data if (temp.data > max.data) { max = temp; } temp = temp.next; } return max.data; } // Function to create hashset table to check Fibonacci // numbers public void createHash(int maxElement) { int prev = 0, curr = 1; hashset.add(prev); hashset.add(curr); // Inserting the Fibonacci numbers until the maximum // element in the Linked List. while (curr <= maxElement) { int temp = curr + prev; hashset.add(temp); prev = curr; curr = temp; } } // Function to delete a node in a Doubly linked list. // delt -> pointer to node to be deleted. public void deleteNode(Node delt) { // Base case if (head == null || delt == null) { return; } // If the node to be deleted is head node if (head == delt) { head = delt.next; } // Change next only if node to be delete is not the // last node if (delt.next != null) { delt.next.prev = delt.prev; } // Change prev only if node to be deleted is not the // first node if (delt.prev != null) { delt.prev.next = delt.next; } return; } // Function to delete all fibonacci nodes from the // doubly linked list. public void deleteFibonacciNodes() { // Find the largest node value in doubly linked // list. int maxEle = LargestInDLL(); createHash(maxEle); Node ptr = head; Node next = null; // Iterating through the linked list while (ptr != null) { next = ptr.next; // If node's data is fibonacci, delete node // 'ptr' if (hashset.contains(ptr.data)) { deleteNode(ptr); } ptr = next; } } // Function to print nodes in a given doubly linked // list. public void printList() { Node curr = head; while (curr != null) { System.out.print(curr.data + " "); curr = curr.next; } System.out.println(); } public static void main(String[] args) { GFG l = new GFG(); // Create the doubly linked list. // null<- 15 <-> 16 <-> 8 <-> 6 <-> 13 -> null l.push(13); l.push(6); l.push(8); l.push(16); l.push(15); System.out.print("Original List: "); l.printList(); l.deleteFibonacciNodes(); System.out.print("Modilied List: "); l.printList(); }}// This code is contributed by lokeshmvs21 |
Python3
# Python3 implementation to delete all# Fibonacci nodes from the# doubly linked list# Node of the doubly linked listclass Node: def __init__(self): self.data = 0 self.next = None self.prev = None # Function to add a node at the beginning# of the Doubly Linked Listdef push(head_ref, new_data): # Allocate the node new_node = Node() # Insert the data new_node.data = new_data; # Since we are adding at the beginning, # prev is always None new_node.prev = None; # Link the old list of the new node new_node.next = (head_ref); # Change the prev of head node to new node if ((head_ref) != None): (head_ref).prev = new_node; # Move the head to point to the new node (head_ref) = new_node; return head_ref# Function to find the largest# nodes in the Doubly Linked Listdef LargestInDLL(head_ref): max = None temp = None # Initialize two-pointer temp # and max on the head node temp = max = head_ref; # Traverse the whole doubly linked list while (temp != None): # If temp's data is greater than # the max's data, then max = temp # and return max.data if (temp.data > max.data): max = temp; temp = temp.next; return max.data;# Function to create hashset table to# check Fibonacci numbersdef createHash( hashset, maxElement): prev = 0 curr = 1; hashset.add(prev); hashset.add(curr); # Inserting the Fibonacci numbers # until the maximum element in the # Linked List while (curr <= maxElement): temp = curr + prev; hashset.add(temp); prev = curr; curr = temp; # Function to delete a node# in a Doubly Linked List.# head_ref -. pointer to head node pointer.# delt -. pointer to node to be deleteddef deleteNode(head_ref, delt): # Base case if (head_ref == None or delt == None): return; # If the node to be deleted is head node if (head_ref == delt): head_ref = delt.next; # Change next only if node to be # deleted is not the last node if (delt.next != None): delt.next.prev = delt.prev; # Change prev only if node to be # deleted is not the first node if (delt.prev != None): delt.prev.next = delt.next; # Finally, free the memory # occupied by delt del(delt); return;# Function to delete all fibonacci nodes# from the doubly linked listdef deleteFibonacciNodes(head_ref): # Find the largest node value # in Doubly Linked List maxEle = LargestInDLL(head_ref); # Creating a set containing # all the fibonacci numbers # upto the maximum data value # in the Doubly Linked List hashset = set() createHash(hashset, maxEle); ptr = head_ref; next=None # Iterating through the linked list while (ptr != None): next = ptr.next; # If node's data is fibonacci, # delete node 'ptr' if (ptr.data in hashset): deleteNode(head_ref, ptr); ptr = next; # Function to print nodes in a# given doubly linked listdef printList(head): while (head != None): print(head.data, end = ' ') head = head.next; # Driver programif __name__=='__main__': head = None; # Create the doubly linked list # 15 <. 16 <. 8 <. 6 <. 13 head = push(head, 13); head = push(head, 6); head = push(head, 8); head = push(head, 16); head = push(head, 15); print("Original List: ", end='') printList(head); deleteFibonacciNodes(head); print("\nModified List: ", end='') printList(head);# This code is contributed by rutvik_56 |
C#
// C# implementation to delete all Fibonacci nodes from// the doubly linked listusing System;using System.Collections.Generic;public class GFG { // Node of a doubly linked list class Node { public int data; public Node next, prev; } Node head = null; HashSet<int> hashset = new HashSet<int>(); // Function to add a node at the beginning of the doubly // linked list. Node push(int new_data) { // Allocate the node Node new_node = new Node(); // Insert the data new_node.data = new_data; // Since we are adding at the beginning, prev is // always null new_node.prev = null; // Link the old list of the new node new_node.next = head; // change the prev of head node to new node if (head != null) { head.prev = new_node; } // move the head to point to the new node. head = new_node; return head; } // Function to find the largest nodes in the doubly // linked list. int LargestInDLL() { // Initialize two pointer temp and max on to the // head node. Node max = head; Node temp = head; // Traverse the whole doubly linked list while (temp != null) { // If temp's data is greater than the max's // data, then max = temp and return max.data if (temp.data > max.data) { max = temp; } temp = temp.next; } return max.data; } // Function to create hashset table to check Fibonacci // numbers void createHash(int maxElement) { int prev = 0, curr = 1; hashset.Add(prev); hashset.Add(curr); // Inserting the Fibonacci numbers until the maximum // element in the Linked List. while (curr <= maxElement) { int temp = curr + prev; hashset.Add(temp); prev = curr; curr = temp; } } // Function to delete a node in a Doubly linked list. // delt -> pointer to node to be deleted. void deleteNode(Node delt) { // Base case if (head == null || delt == null) { return; } // If the node to be deleted is head node if (head == delt) { head = delt.next; } // Change next only if node to be delete is not the // last node if (delt.next != null) { delt.next.prev = delt.prev; } // Change prev only if node to be deleted is not the // first node if (delt.prev != null) { delt.prev.next = delt.next; } return; } // Function to delete all fibonacci nodes from the // doubly linked list. void deleteFibonacciNodes() { // Find the largest node value in doubly linked // list. int maxEle = LargestInDLL(); createHash(maxEle); Node ptr = head; Node next = null; // Iterating through the linked list while (ptr != null) { next = ptr.next; // If node's data is fibonacci, delete node // 'ptr' if (hashset.Contains(ptr.data)) { deleteNode(ptr); } ptr = next; } } // Function to print nodes in a given doubly linked // list. void printList() { Node curr = head; while (curr != null) { Console.Write(curr.data + " "); curr = curr.next; } Console.WriteLine(); } static public void Main() { GFG l = new GFG(); // Create the doubly linked list. // null<- 15 <-> 16 <-> 8 <-> 6 <-> 13 -> null l.push(13); l.push(6); l.push(8); l.push(16); l.push(15); Console.Write("Original List: "); l.printList(); l.deleteFibonacciNodes(); Console.Write("Modilied List: "); l.printList(); }}// This code is contributed by lokeshmvs21 |
Javascript
// Java implementation to delete all Fibonacci nodes from// the doubly linked list// Node of a doubly linked listclass Node { constructor(){ this.data = 0; this.next = null; this.prev = null; }}let head = null;let hashset = new Set();// Function to add a node at the beginning of the doubly// linked list.function push(new_data){ // Allocate the node let new_node = new Node(); // Insert the data new_node.data = new_data; // Since we are adding at the beginning, prev is // always null new_node.prev = null; // Link the old list of the new node new_node.next = head; // change the prev of head node to new node if (head != null) { head.prev = new_node; } // move the head to point to the new node. head = new_node; return head;}// Function to find the largest nodes in the doubly// linked list.function LargestInDLL(){ // Initialize two pointer temp and max on to the // head node. let max = head; let temp = head; // Traverse the whole doubly linked list while (temp != null) { // If temp's data is greater than the max's // data, then max = temp and return max.data if (temp.data > max.data) { max = temp; } temp = temp.next; } return max.data;}// Function to create hashset table to check Fibonacci// numbersfunction createHash(maxElement){ let prev = 0, curr = 1; hashset.add(prev); hashset.add(curr); // Inserting the Fibonacci numbers until the maximum // element in the Linked List. while (curr <= maxElement) { let temp = curr + prev; hashset.add(temp); prev = curr; curr = temp; }}// Function to delete a node in a Doubly linked list.// delt -> pointer to node to be deleted.function deleteNode(delt){ // Base case if (head == null || delt == null) { return; } // If the node to be deleted is head node if (head == delt) { head = delt.next; } // Change next only if node to be delete is not the // last node if (delt.next != null) { delt.next.prev = delt.prev; } // Change prev only if node to be deleted is not the // first node if (delt.prev != null) { delt.prev.next = delt.next; } return;}// Function to delete all fibonacci nodes from the// doubly linked list.function deleteFibonacciNodes(){ // Find the largest node value in doubly linked // list. let maxEle = LargestInDLL(); createHash(maxEle); let ptr = head; let next = null; // Iterating through the linked list while (ptr != null) { next = ptr.next; // If node's data is fibonacci, delete node // 'ptr' if (hashset.has(ptr.data)) { deleteNode(ptr); } ptr = next; }}// Function to print nodes in a given doubly linked// list.function printList(){ let curr = head; while (curr != null) { document.write(curr.data + " "); curr = curr.next; } document.write("\n");}// Create the doubly linked list.// null<- 15 <-> 16 <-> 8 <-> 6 <-> 13 -> nullpush(13);push(6);push(8);push(16);push(15);console.log("Original List: ");printList();deleteFibonacciNodes();console.log("Modilied List: ");printList();// This code is contributed by Nidhi goel. |
Output:
Original List: 15 16 8 6 13 Modified List: 15 16 6
Time Complexity: O(N), where N is the total number of nodes.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



