Find the value of ln(N!) using Recursion

Given a number N, the task is to find the log value of the factorial of N i.e. log(N!).
Note: ln means log with base e.
Examples:
Input: N = 2 Output: 0.693147 Input: N = 3 Output: 1.791759
Approach:
Method -1: Calculate n! first, then take its log value.
Method -2: By using the property of log, i.e. take the sum of log values of n, n-1, n-2 …1.
ln(n!) = ln(n*n-1*n-2*…..*2*1) = ln(n)+ln(n-1)+……+ln(2)+ln(1)
Below is the implementation of the Method-2:
C++
// C++ implementation of the above approach#include <bits/stdc++.h>using namespace std;// Function to calculate the valuedouble fact(int n){ if (n == 1) return 0; return fact(n - 1) + log(n);}// Driver codeint main(){ int N = 3; cout << fact(N) << "\n"; return 0;} |
C
// C implementation of the above approach#include <math.h>#include <stdio.h>long double fact(int n){ if (n == 1) return 0; return fact(n - 1) + log(n);}// Driver codeint main(){ int n = 3; printf("%Lf", fact(n)); return 0;} |
Java
// Java implementation of the above approachimport java.util.*;import java.io.*;class logfact { public static double fact(int n) { if (n == 1) return 0; return fact(n - 1) + Math.log(n); } public static void main(String[] args) { int N = 3; System.out.println(fact(N)); }} |
Python
# Python implementation of the above approachimport mathdef fact(n): if (n == 1): return 0 else: return fact(n-1) + math.log(n)N = 3print(fact(N)) |
C#
// C# implementation of the above approachusing System;class GFG{ public static double fact(int n) { if (n == 1) return 0; return fact(n - 1) + Math.Log(n); } // Driver code public static void Main() { int N = 3; Console.WriteLine(fact(N)); }}// This code is contributed by ihritik |
PHP
<?php //PHP implementation of the above approachfunction fact($n){ if ($n == 1) return 0; return fact($n - 1) + log($n);}// Driver code$n = 3;echo fact($n);// This code is contributed by ihritik?> |
Javascript
<script>// Javascript implementation of the above approach// Function to calculate the valuefunction fact(n){ if (n == 1) return 0; return fact(n - 1) + Math.log(n);}// Driver codevar N = 3;document.write( fact(N).toFixed(6) + "<br>");</script> |
Output:
1.791759
Time Complexity: O(n)
Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



