Number of non-decreasing sub-arrays of length K

Given an array arr[] of length N, the task is to find the number of non-decreasing sub-arrays of length K.
Examples:
Input: arr[] = {1, 2, 3, 2, 5}, K = 2
Output: 3
{1, 2}, {2, 3} and {2, 5} are the increasing
subarrays of length 2.
Input: arr[] = {1, 2, 3, 2, 5}, K = 1
Output: 5
Naive approach Generate all the sub-arrays of length K and then check whether the sub-array satisfies the condition. Thus, the time complexity of the approach will be O(N * K).
Better approach: A better approach will be using two-pointer technique. Let’s say the current index is i.
- Find the largest index j, such that the sub-array arr[i…j] is non-decreasing. This can be achieved by simply incrementing the value of j starting from i + 1 and checking whether arr[j] is greater than arr[j – 1].
- Let’s say the length of the sub-array found in the previous step is L. The number of sub-arrays of length K contained in it will be max(L – K + 1, 0).
- Now, update i = j and repeat the above steps while i is in the index range.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the count of// increasing subarrays of length kint cntSubArrays(int* arr, int n, int k){ // To store the final result int res = 0; int i = 0; // Two pointer loop while (i < n) { // Initialising j int j = i + 1; // Looping till the subarray increases while (j < n and arr[j] >= arr[j - 1]) j++; // Updating the required count res += max(j - i - k + 1, 0); // Updating i i = j; } // Returning res return res;}// Driver codeint main(){ int arr[] = { 1, 2, 3, 2, 5 }; int n = sizeof(arr) / sizeof(int); int k = 2; cout << cntSubArrays(arr, n, k); return 0;} |
Java
// Java implementation of the approachclass GFG{// Function to return the count of// increasing subarrays of length kstatic int cntSubArrays(int []arr, int n, int k){ // To store the final result int res = 0; int i = 0; // Two pointer loop while (i < n) { // Initialising j int j = i + 1; // Looping till the subarray increases while (j < n && arr[j] >= arr[j - 1]) j++; // Updating the required count res += Math.max(j - i - k + 1, 0); // Updating i i = j; } // Returning res return res;}// Driver codepublic static void main(String []args){ int arr[] = { 1, 2, 3, 2, 5 }; int n = arr.length; int k = 2; System.out.println(cntSubArrays(arr, n, k));}}// This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of the approach # Function to return the count of # increasing subarrays of length k def cntSubArrays(arr, n, k) : # To store the final result res = 0; i = 0; # Two pointer loop while (i < n) : # Initialising j j = i + 1; # Looping till the subarray increases while (j < n and arr[j] >= arr[j - 1]) : j += 1; # Updating the required count res += max(j - i - k + 1, 0); # Updating i i = j; # Returning res return res; # Driver code if __name__ == "__main__" : arr = [ 1, 2, 3, 2, 5 ]; n = len(arr); k = 2; print(cntSubArrays(arr, n, k)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approachusing System; class GFG{// Function to return the count of// increasing subarrays of length kstatic int cntSubArrays(int []arr, int n, int k){ // To store the final result int res = 0; int i = 0; // Two pointer loop while (i < n) { // Initialising j int j = i + 1; // Looping till the subarray increases while (j < n && arr[j] >= arr[j - 1]) j++; // Updating the required count res += Math.Max(j - i - k + 1, 0); // Updating i i = j; } // Returning res return res;}// Driver codepublic static void Main(String []args){ int []arr = { 1, 2, 3, 2, 5 }; int n = arr.Length; int k = 2; Console.WriteLine(cntSubArrays(arr, n, k));}}// This code is contributed by Rajput-Ji |
Javascript
<script>// Javascript implementation of the approach// Function to return the count of// increasing subarrays of length kfunction cntSubArrays(arr, n, k){ // To store the final result var res = 0; var i = 0; // Two pointer loop while (i < n) { // Initialising j var j = i + 1; // Looping till the subarray increases while (j < n && arr[j] >= arr[j - 1]) j++; // Updating the required count res += Math.max(j - i - k + 1, 0); // Updating i i = j; } // Returning res return res;}// Driver codevar arr = [ 1, 2, 3, 2, 5 ];var n = arr.length;var k = 2;document.write( cntSubArrays(arr, n, k));</script> |
Output:
3
Time Complexity: O(n)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



