Sum of cubes of all Subsets of given Array

Given an array
arr[]
, the task is to calculate the sum of cubes of all possible non-empty subsets of the given array. Since, the answer can be large, print the value as
mod
1000000007.
Examples:
Input: arr[] = {1, 2} Output: 18 subset({1}) = 13 = 1 subsetval({2}) = 23 = 8 subset({1, 2}) = 13 + 23 = 1 + 8 = 9 Sum of cubes of all Subsets = 1 + 8 + 9 = 18 Input: arr[] = {1, 1, 1} Output: 12
Naive approach:
A simple approach is to
and then cube each element in that subset and add it to the result. The time complexity of this approach will be
O(2
N
)
Efficient approach:
- It can be observed that each element of the original array appears in 2(N – 1) times in all subsets.
- Therefore contribution of any element arri in the final answer will be
arri * 2(N – 1)
- So, the Sum of cubes of all Subsets will be
[arr03 + arr13 + arr23 + … + arr(N-1)3] * 2(N – 1)
Below is the implementation of the above approach:
C++
// C++ implementation of the approachÂ
#include <bits/stdc++.h>using namespace std;Â
const int mod = 1e9 + 7;Â
// Function to return (2^P % mod)long long power(int p){Â Â Â Â long long res = 1;Â Â Â Â for (int i = 1; i <= p; ++i) {Â Â Â Â Â Â Â Â res *= 2;Â Â Â Â Â Â Â Â res %= mod;Â Â Â Â }Â Â Â Â return res % mod;}Â
// Function to return// the sum of cubes of subsetslong long subset_cube_sum(vector<int>& A){Â
    int n = (int)A.size();Â
    long long ans = 0;Â
    // cubing the elements    // and adding it to ans    for (int i : A) {        ans += (1LL * i * i * i) % mod;        ans %= mod;    }Â
    return (1LL * ans * power(n - 1))           % mod;}Â
// Driver codeint main(){Â Â Â Â vector<int> A = { 1, 2 };Â
    cout << subset_cube_sum(A);Â
    return 0;} |
Java
// Java implementation of the approachpublic class GFG {Â Â Â Â static final long MOD = (long) 1e9 + 7;Â
    // Function to return (2^P % MOD)    static long power(int p) {        long res = 1;        for (int i = 1; i <= p; i++) {            res *= 2;            res %= MOD;        }        return res % MOD;    }Â
    // Function to return the sum of cubes of subsets    static long subsetCubeSum(int[] A) {        int n = A.length;        long ans = 0;Â
        // Cubing the elements and adding it to ans        for (int i : A) {            ans += (i * i * i) % MOD;            ans %= MOD;        }Â
        return (ans * power(n - 1)) % MOD;    }Â
    // Driver code    public static void main(String[] args) {        int[] A = {1, 2};        System.out.println(subsetCubeSum(A));    }} |
Python3
# Python3 implementation of the approach mod = int(1e9) + 7; Â
# Function to return (2^P % mod) def power(p) :Â
    res = 1;     for i in range(1, p + 1) :        res *= 2;         res %= mod;          return res % mod; Â
# Function to return # the sum of cubes of subsets def subset_cube_sum(A) : Â
    n = len(A); Â
    ans = 0; Â
    # cubing the elements     # and adding it to ans     for i in A :        ans += (i * i * i) % mod;         ans %= mod; Â
    return (ans * power(n - 1)) % mod; Â
# Driver code if __name__ == "__main__" : Â
    A = [ 1, 2 ]; Â
    print(subset_cube_sum(A));      # This code is contributed by Yash_R |
C#
// C# implementation for the above approachusing System;Â
public class GFG {Â Â Â Â static readonly long MOD = (long)1e9 + 7;Â
    // Function to return (2^P % MOD)    static long Power(int p) {        long res = 1;        for (int i = 1; i <= p; i++) {            res = (res * 2) % MOD;        }        return res;    }Â
    // Function to return the sum of cubes of subsets    static long SubsetCubeSum(int[] A) {        int n = A.Length;        long ans = 0;Â
        // Cubing the elements and adding it to ans        foreach (int i in A) {            ans = (ans + ((i * i * i) % MOD)) % MOD;        }Â
        return (ans * Power(n - 1)) % MOD;    }Â
    // Driver code    public static void Main(string[] args) {        int[] A = { 1, 2 };        Console.WriteLine(SubsetCubeSum(A));    }} |
Output
18
Time Complexity:
O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



