Reduce array to a single element by repeatedly removing an element from any increasing pair

Given an array arr[] consisting of permutation in the range [1, N], the task is to check if the given array can be reduced to a single non-zero element by performing the following operations:
Select indices i and j such that i < j and arr[i] < arr[j] and convert one of the two elements to 0.
If it is possible to reduce the array to a single element, then print “Yes” followed by the chosen indices along with the index of the replaced element in each operation. Otherwise, print “No”.
Examples:
Input: arr[] = {2, 4, 6, 1, 3, 5}
Output:
Yes
0 1 1
0 2 2
3 4 3
0 4 4
0 5 5
Explanation:
In the first operation choose the elements 2 and 4 at indices 0 and 1. Convert the element 4 at index 1 to 0, arr[] = {2, 0, 6, 1, 3, 5}
In the second operation choose the elements 2 and 6 at indices 0 and 2. Convert the element 6 at index 2 to 0, arr[] = {2, 0, 0, 1, 3, 5}
In the third operation choose the elements 1 and 3 at indices 3 and 4. Convert the element 1 at index 3 to 0, arr[] = {2, 0, 0, 0, 3, 5}
In the forth operation choose the elements 2 and 3 at indices 0 and 4. Convert the element 3 at index 4 to 0, arr[] = {2, 0, 0, 0, 0, 5}
In the fifth operation choose the elements 2 and 5 at indices 0 and 5. Convert the element 5 at index 5 to 0, arr[] = {2, 0, 0, 0, 0, 0}
So, the array is reduced to a single positive element in 5 operations.Input: arr[] = {2, 3, 1}
Output: No
Explanation:
There is not set of operations in which the given array can be converted to a single element.
Approach: The idea is to convert all elements from indices [1, N – 2] first to 0 and then eliminate one of either the 0th or (N – 1)th element in the last move to obtain the singleton array. Below are the steps to solve the problem:
- Choose a valid set of indices on which the given operation can be performed.
- Now to choose which element to be converted to 0 check the following conditions:
- If the 0th index of the array is a part of these indices, then convert the element at the other index to 0.
- If 0th index is not a part of the chosen indices, then replace the smaller of the two elements to 0.
- Continue this process until a single positive element remains in the array.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to print the order of// indices of converted numbersvoid order_of_removal(int a[], int n){ // Stores the values of indices // with numbers > first index queue<int> greater_indices; int first = a[0]; // Stores the index of the closest // consecutive number to index 0 int previous_index = 0; // Push the indices into the queue for (int i = 1; i < n; i++) { if (a[i] > first) greater_indices.push(i); } // Traverse the queue while (greater_indices.size() > 0) { // Stores the index of the // closest number > arr[0] int index = greater_indices.front(); greater_indices.pop(); int to_remove = index; // Remove elements present in // indices [1, to_remove - 1] while (--to_remove > previous_index) { cout << to_remove << " " << index << " " << to_remove << endl; } cout << 0 << " " << index << " " << index << endl; // Update the previous_index // to index previous_index = index; }}// Function to check if array arr[] can// be reduced to single element or notvoid canReduced(int arr[], int N){ // If array element can't be // reduced to single element if (arr[0] > arr[N - 1]) { cout << "No" << endl; } // Otherwise find the order else { cout << "Yes" << endl; order_of_removal(arr, N); }}// Driver Codeint main(){ // Given array arr[] int arr[] = { 1, 2, 3, 4 }; int N = sizeof(arr) / sizeof(arr[0]); // Function Call canReduced(arr, N); return 0;} |
Java
// Java program for the above approach import java.util.*;class GFG{ // Function to print the order of // indices of converted numbers public static void order_of_removal(int[] a, int n) { // Stores the values of indices // with numbers > first index Queue<Integer> greater_indices = new LinkedList<>(); int first = a[0]; // Stores the index of the closest // consecutive number to index 0 int previous_index = 0; // Push the indices into the queue for(int i = 1; i < n; i++) { if (a[i] > first) greater_indices.add(i); } // Traverse the queue while (greater_indices.size() > 0) { // Stores the index of the // closest number > arr[0] int index = greater_indices.peek(); greater_indices.remove(); int to_remove = index; // Remove elements present in // indices [1, to_remove - 1] while (--to_remove > previous_index) { System.out.println(to_remove + " " + index + " " + to_remove); } System.out.println(0 + " " + index + " " + index); // Update the previous_index // to index previous_index = index; } } // Function to check if array arr[] can // be reduced to single element or not public static void canReduced(int[] arr, int N) { // If array element can't be // reduced to single element if (arr[0] > arr[N - 1]) { System.out.println("No"); } // Otherwise find the order else { System.out.println("Yes"); order_of_removal(arr, N); } } // Driver Code public static void main(String[] args){ // Given array arr[] int arr[] = { 1, 2, 3, 4 }; int N = arr.length; // Function call canReduced(arr, N); }}// This code is contributed divyeshrabadiya07 |
Python3
# Python3 program for the above approach# Function to print the order of# indices of converted numbersdef order_of_removal(a, n) : # Stores the values of indices # with numbers > first index greater_indices = [] first = a[0] # Stores the index of the closest # consecutive number to index 0 previous_index = 0 # Push the indices into the queue for i in range(1, n) : if (a[i] > first) : greater_indices.append(i) # Traverse the queue while (len(greater_indices) > 0) : # Stores the index of the # closest number > arr[0] index = greater_indices[0]; greater_indices.pop(0) to_remove = index # Remove elements present in # indices [1, to_remove - 1] to_remove =- 1 while (to_remove > previous_index) : print(to_remove, index, to_remove) print(0, index, index) # Update the previous_index # to index previous_index = index# Function to check if array arr[] can# be reduced to single element or notdef canReduced(arr, N) : # If array element can't be # reduced to single element if (arr[0] > arr[N - 1]) : print("No") # Otherwise find the order else : print("Yes") order_of_removal(arr, N)# Given array arr[]arr = [ 1, 2, 3, 4 ]N = len(arr)# Function CallcanReduced(arr, N)# This code is contributed by divyesh072019 |
C#
// C# program for // the above approach using System;using System.Collections.Generic;class GFG{ // Function to print the order of // indices of converted numbers public static void order_of_removal(int[] a, int n) { // Stores the values of indices // with numbers > first index Queue<int> greater_indices = new Queue<int>(); int first = a[0]; // Stores the index of the closest // consecutive number to index 0 int previous_index = 0; // Push the indices into the queue for(int i = 1; i < n; i++) { if (a[i] > first) greater_indices.Enqueue(i); } // Traverse the queue while (greater_indices.Count > 0) { // Stores the index of the // closest number > arr[0] int index = greater_indices.Peek(); greater_indices.Dequeue(); int to_remove = index; // Remove elements present in // indices [1, to_remove - 1] while (--to_remove > previous_index) { Console.WriteLine(to_remove + " " + index + " " + to_remove); } Console.WriteLine(0 + " " + index + " " + index); // Update the previous_index // to index previous_index = index; } } // Function to check if array []arr can // be reduced to single element or not public static void canReduced(int[] arr, int N) { // If array element can't be // reduced to single element if (arr[0] > arr[N - 1]) { Console.WriteLine("No"); } // Otherwise find the order else { Console.WriteLine("Yes"); order_of_removal(arr, N); } } // Driver Code public static void Main(String[] args){ // Given array []arr int []arr = {1, 2, 3, 4}; int N = arr.Length; // Function call canReduced(arr, N); }}// This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript program for // the above approach // Function to print the order of // indices of converted numbers function order_of_removal(a, n) { // Stores the values of indices // with numbers > first index var greater_indices = []; var first = a[0]; // Stores the index of the closest // consecutive number to index 0 var previous_index = 0; // Push the indices into the queue for (var i = 1; i < n; i++) { if (a[i] > first) greater_indices.push(i); } // Traverse the queue while (greater_indices.length > 0) { // Stores the index of the // closest number > arr[0] var index = greater_indices[0]; greater_indices.shift(); var to_remove = index; // Remove elements present in // indices [1, to_remove - 1] to_remove -= 1; while (to_remove > previous_index) { document.write(to_remove + " " + index + " " + to_remove + "<br>"); } document.write(0 + " " + index + " " + index + "<br>"); // Update the previous_index // to index previous_index = index; } } // Function to check if array []arr can // be reduced to single element or not function canReduced(arr, N) { // If array element can't be // reduced to single element if (arr[0] > arr[N - 1]) { document.write("No" + "<br>"); } // Otherwise find the order else { document.write("Yes" + "<br>"); order_of_removal(arr, N); } } // Driver Code // Given array []arr var arr = [1, 2, 3, 4]; var N = arr.length; // Function call canReduced(arr, N); // This code is contributed by rdtank. </script> |
Yes 0 1 1 0 2 2 0 3 3
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



